UNIVERSIDAD NACIONAL DE HUANCAVELICA

(Creado por Ley N° 25265)

FACULTAD DE CIENCIAS DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL - HUANCAVELICA

TESIS

DISTRIBUCIÓN ÓPTIMA DE AMORTIGUADORES VISCOSOS NO LINEALES PARA UNA EDIFICACIÓN APORTICADA DE CONCRETO ARMADO MEDIANTE ALGORITMOS GENÉTICOS

LÍNEA DE INVESTIGACIÓN:

ESTRUCTURA - CONCRETOS

DISCIPLINA: INGENIERÍA Y TECNOLOGÍAS

PARA OPTAR EL TÍTULO PROFESIONAL DE: INGENIERO CIVIL

PRESENTADO POR LOS BACHILLERES:

SALVATIERRA CONDORI, Adolfo SALVATIERRA CONDORI, Ronal

HUANCAVELICA - PERÚ 2018

UNIVERSIDAD NACIONAL DE HUANCAVELICA

FACULTAD DE CIENCIAS DE INGENIERÍA

ACTA DE SUSTENTACIÓN DE TESIS

En el Auditórium de la Facultad de Ciencias de Ingeniería, a los 28 días del mes de noviembre del año 2018, a horas 11:30 a.m, se reunieron los miembros del Jurado Calificador conformado por los siguientes: Ing. Carlos GASPAR PACO (PRESIDENTE), M.Sc. Hugo Rubén LUJAN JERI (SECRETARIO), Arq. Abdón Dante OLIVERA QUINTANILLA (VOCAL), designados con Resolución de Consejo de Facultad N° 539-2016-FCI-UNH, de fecha 22 de diciembre del 2016, y ratificados con Resolución de Decano N° 160-2018-FCI-UNH de fecha 23 de noviembre del 2018, a fin de proceder con la calificación de la sustentación del informe final de tesis titulado: "DISTRIBUCIÓN ÓPTIMA DE AMORTIGUADORES VISCOSOS NO LINEALES PARA UNA EDIFICACIÓN APORTICADA DE CONCRETO ARMADO MEDIANTE ALGORITMOS GENÉTICOS", presentado por los Bachilleres Adolfo SALVATIERRA CONDORI y Ronal SALVATIERRA CONDORI, para optar el Título Profesional de Ingeniero Civil; en presencia del Ing. Omar CABALLERO SÁNCHEZ, Asesor y el M.Sc. Iván Arturo AYALA BIZARRO como Co-Asesor del presente trabajo de tesis. Finalizado la evaluación a horas. 12:39. p.m.se invitó al público presente y los sustentantes abandonar el recinto. Luego de una amplia deliberación por parte de los Jurados, se llegó al siguiente resultado:

Adolfo SALVATIERRA CONDORI

APROBADO

POR UNAN IMIDAD

DESAPROBADO

 \times

Ronal SALVATIERRA CONDORI

APROBADO

F

POR UNANIMIDAD

DESAPROBADO

En señal de conformidad, firmamos a continuación:

Presidente

Secretario

elle Bº Decano

unu Voca

Dedicatoria

A nuestros padres DOMINGO y SABINA, quienes nos brindaron su apoyo durante nuestro camino por la educación. Y a nuestros hermanos, familias. Quienes nos impulsaron a terminar esta trabajo de investigación.

Agradecimientos

Expreso mi agradecimiento a la Universidad Nacional de Huancavelica - Escuela Profesional de Ingeniería Civil, y a los docentes por el apoyo prestado en el desarrollo del presente trabajo de investigación.

Al Ing. Omar Caballero sánchez, asesor de esta tesis, por su orientación y apoyo constante, por sus acertadas sugerencias que direccionaron al éxito de este trabajo de investigación.

Al M.Sc. Ivan Ayala Bizarro, por su valiosa orientación y recomendación durante el desarrollo de este trabajo de investigación.

Y como no agradecer a las personas que me influenciaron y ayudaron directamente en este trabajo:

Finalmente, a nuestra familia por su apoyo incondicional y ante todo, agradezco desde lo más profundo del Ser a mi Madre, por su inconmensurable amor, su incondicional apoyo y sus invaluables gestos y frases de aliento.

Resumen

En el presente trabajo de investigación se propone una distribución óptima de amortiguadores viscosos no lineales para una edificación aporticada de concreto armado propuesta de 12 niveles con el objetivo de mejorar el desempeño frente a un evento sísmico intenso, se realiza a través de un modelo metaheurístico basado en algoritmos genéticos, el cual consiste en hacer búsquedas aleatorias en el espacio de solución señalado por las restricciones obteniendo soluciones cada vez más eficientes, para lograrlo se proponen dos parámetros de optimización, el primero basado a partir de las derivas de entrepiso y el segundo en la disipación de energía en la alto de la edificación.

Al iniciar el análisis de la edificación sin adicionar los amortiguadores no cumplió con los requisitos mínimos exigidos por la norma E.030 de diseño sismorresistente, en consecuencia se pasó realizar incorporando amortiguador teniendo como resultado una buena distribución mostrando tener un buen desempeño en relación de los reglamentos establecidos.

Los resultados obtenidos muestran una convergencia a un 73.34% en dirección x, 76.99% en dirección y, llegando a cumplir con el objetivo inicialmente propuesto, la deriva máxima es de 0.0043, los desplazamiento en el centro de masa para el ultimo nivel es 12.77 cm en el sentido x, 14.50 cm en el sentido y, comparando los resultados con respecto al edificio sin disipadores reduciendo en un 56.52% en dirección X, 52.35% en dirección Y, cumpliendo una buena distribución y uniformidad de disipación de energía dando como resultado mejor comportamiento inelastico de la estructura a grandes acciones sísmicas. **Palabras clave:** Metaheurístico, Algoritmos genéticos (AG), Desempeño

Estructural, Amortiguadores viscosos no lineales.

Abstract

The Presently investigation work not intends a good distribution of viscous dampers not lineals for a building frame of reinforced concrete proposed of 12 levels with the objective of improving the performance in front of an intense seismic event, this was carried out through a model metaheurístic based on genetic algorithms, which consists on making random searches in the signal solution space for the restrictions obtaining more and more efficient solutions, to achieve it intends two parameters of optimization, the first one based starting from the drifts of among floors and the second on the energy dissipation in the height of building frame.

When beginning the analysis of building frame without adding the dampers it didn't fulfill the minimum requirements demanded by the norm E.030 of design sismoresitente, in consequence he spent to carry out incorporating dampers having a good distribution as a result showing to have a good performance in relationship of the established regulations.

The obtained results show a convergence at a 73.34% in address x, and 76.99% in address y, arriving to reach to fulfill our initially proposed objective, the maximum drift is of 0.0043, the displacement in the center of mass for the finish level it is 12.77 cm in the sense x, 14.50 cm in the sense and-and, comparing the results with regard to the building without viscous dampers reducing in a 56.52% in address x, 52.35% in address y, completing a good distribution and uniformity of energy dissipation giving better inelastic behavior as a result from the structure to big seismic actions.

Keywords: Metahuristic, genetic Algorithms (AG), Performance structure,

Viscous Dampers non-lineal.

Índice general

Portada	I
Dedicatoria	IV
Agradecimientos	v
Resumen	VI
Índice General	XII
Índice de Figuras	XVI
Índice de Tablas x	VIII
Introducción	XXI
Capítulo I: Problema	1
1.1. Planteamiento del problema	1
1.1. Planteamiento del problema	1 3
 1.1. Planteamiento del problema	1 3 3
 1.1. Planteamiento del problema	1 3 3 3
 1.1. Planteamiento del problema	1 3 3 3 3
 1.1. Planteamiento del problema	1 3 3 3 3 3
 1.1. Planteamiento del problema	1 3 3 3 3 3 4

Ca	pítu	lo II: N	Marco Te	eórico	7
	2.1.	Antece	edentes .		7
		2.1.1.	Antecede	entes internacionales	7
		2.1.2.	Antecede	entes nacionales	8
	2.2.	Bases 1	teóricas .		9
		2.2.1.	Diseño si	ísmico convencional y tendencias actuales \ldots	9
		2.2.2.	Propuest	a de la comite VISION 2000	10
			2.2.2.1.	Niveles de desempeño de las edificaciones	11
			2.2.2.2.	Daño estructural asociado a la deriva del edificio	14
			2.2.2.3.	Criterios de diseño sismorresistente	14
		2.2.3.	FEMA 2	73/356	17
		2.2.4.	Propuest	a ATC-40	17
			2.2.4.1.	Limites de los niveles de desempeño por ATC-40	18
		2.2.5.	Deriva d	e piso	18
		2.2.6.	Sistemas	de control de la respuesta dinámica	19
			2.2.6.1.	Balance de energía	21
			2.2.6.2.	Sistemas de protección	23
		2.2.7.	Disipado	r de energía fluido viscoso	26
			2.2.7.1.	Partes principales del disipador de energía viscoso	27
			2.2.7.2.	Ecuación general	28
			2.2.7.3.	Comportamiento fuerza desplazamiento	29
			2.2.7.4.	Características de los disipadores fluido viscoso	31
			2.2.7.5.	Distribución óptima en una edificación	31
			2.2.7.6.	Criterios de ubicación	32
		2.2.8.	Ecuación	dinámica de movimiento	32
			2.2.8.1.	Estructuras con sistema de amortiguamiento	
				con múltiples grados de libertad (MODOF)	33
		2.2.9.	Análisis	dinámico no lineal	36
			2.2.9.1.	Solución de la ecuación dinámica de equilibrio .	36
		2.2.10.	Optimiza	ación	40
			2.2.10.1.	Método tradicional de diseño $\ldots \ldots \ldots \ldots$	41

	2.2.10.2. Método de diseño óptimo	41
	2.2.11. Técnicas de diseño óptimo en ingeniería	42
	2.2.11.1. Métodos exactos	42
	2.2.11.2. Optimización heurística	43
	2.2.11.3. Optimización metaheurística	43
	2.2.12. Algoritmos genéticos (AG)	51
	2.2.12.1. Características de algoritmos genéticos (AG)	51
	2.2.12.2. Representación de las variables	52
	2.2.12.3. Función de evaluación	52
	2.2.12.4. Proceso de los algoritmos genéticos (AG)	53
	2.2.12.5. Operadores genéticos	55
	2.2.13. Programación en Fortran con (API) ETABS 2016 \ldots .	59
	2.2.14. Algoritmo genético propuesto para el diseño de una edi-	
	ficación con amortiguadores	60
	2.2.14.1. Construcción de la función objetivo	60
	2.2.14.2. Variables de diseño	62
	2.2.14.3. Función objetivo	62
	2.2.14.4. Restricciones	63
2.3.	Hipótesis	65
2.4.	Variables de estudio	65
	2.4.1. Variable independiente	66
	2.4.2. Variable dependiente	66
2.5.	Alcances y limitaciones	66
	2.5.1. Alcances	66
	2.5.2. Limitaciones	67
Capítu	lo III: Metodología de la Investigación	68
3.1.	Ámbito de estudio	68
3.2.	Tipo de investigación	69
3.3.	Nivel de investigación	69
3.4.	Método de investigación	69

3.5.	Diseño) de investigación	70
3.6.	Poblac	ción, muestra y muestreo	70
	3.6.1.	Población	70
	3.6.2.	Muestra	70
3.7.	Técnic	as e instrumentos de recolección de datos	71
3.8.	Procee	limiento de recolección de datos	71
3.9.	Técnic	as de procesamiento y análisis de datos	72
	3.9.1.	Análisis de datos	72
			-0
Capitu	lo IV:	Resultados	73
4.1.	Presen	itación de resultados	73
	4.1.1.	Descripción de la estructura	73
		4.1.1.1. Códigos y normativas	73
		4.1.1.2. Datos generales, materiales y cargas	74
	4.1.2.	Pre dimensionamiento de elementos estructurales	74
		4.1.2.1. Losa maciza armado en dos direcciones	74
		4.1.2.2. Vigas	75
		4.1.2.3. Columnas	76
	4.1.3.	Metrado de cargas	77
	4.1.4.	Análisis sísmico de la edificación	77
		4.1.4.1. Consideraciones sísmicas	80
	4.1.5.	Elección del objetivo de desempeño	91
	4.1.6.	Diseño de la edificación con la distribución óptima de	
		amortiguadores viscosos	94
	4.1.7.	Resultados obtenidos para la dirección X \hdots	99
	4.1.8.	Resultados obtenidos para la dirección Y	102
	4.1.9.	Balance energético	105
	4.1.10.	Fuerza y diseño de los dispositivos de amortiguamiento $% {\displaystyle \sum} { $	106
4.2.	discusi	ión	109
	4.2.1.	Prueba de hipótesis	109

Conclusiones y Recomendaciones	112
5.1. Conclusiones \ldots	. 112
5.2. Recomendaciones	. 114
Referencia Bibliográfica	120
Anexo: Modelamiento de la Edificación Aporticada en el Progr	a-
ma ETABS 2016.	131
A.1. Interfaz del Programa	. 131
A.2. Inicializando nuevo Modelo	. 131
A.2.1. Definición de Propiedades de los Materiales	. 134
A.2.2. Asignando Secciones de los Elementos al Modelo	. 135
A.2.3. Definición de Pasos Para el Análisis Dinámico Espectra	136
A.3. Análisis Tiempo - Historia	. 138
Anexo: Procedimientos Para Calcular la Distribución de Amo	r-
tiguadores viscosos en la Aplicacion (AGs)	145
Anexo:Diseño de elementos brazo metálico del dispositivo	148
C.0.0.1. cálculo de rigidez y diseño de brazo metálico .	. 148
Artículo científico	131
Anexo: Código Fuente	153
Anexo: Detalle de secciones Finales	180

Índice de figuras

2.1.	Sectorización de la Curva Capacidad	13
2.2.	Desempeño de edificios (Comite Vision 2000.)	13
2.3.	Estado de daño según la deriva de piso [Velásquez.V.(2006)] $\ $.	19
2.4.	Espectro de desplazamiento al incrementar rigidez y amortigua-	
	miento [Hart y Wong, 2000]	20
2.5.	Espectro de aceleraciones al incrementar la rigidez y el amorti-	
	guamiento [Hart y Wong, 2000]	21
2.6.	Gasto de energía en el edificio del Banco de Nueva Zelanda	
	[Dowrick 1984]	22
2.7.	Balance de energía	22
2.8.	Sistemas de control estructural [45]	23
2.9.	Disipador metálico tipo ADAS	25
2.10.	Esquema disipador de energía tipo Pall	25
2.11.	Disipador sólido viscoelástico.	26
2.12.	Disipador de energía fluido viscoso (Taylor Devices Inc)	26
2.13.	Esquema de un amortiguador viscos o $({\rm soong}$ - Dargust, 1997) $% = (1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2$	27
2.14.	Modelo del amortiguador Taylor Devices Inc	29
2.15.	Relación fuerza desplazamiento en dispositivos de fluidos viscoso	
	con distintos valores de " α "	30
2.16.	Disipador de energía viscoso ante una fuerza sísmica	30
2.17.	Modelo Estructural con Disipadores Fluido Viscosos [Cheng et	
	al., 2008]	34
2.18.	Esquema Para el Método Tradicional de Diseño	41

2.19.	Esquema Para el Diseño Optimo	42
2.20.	Esquema de métodos de resolución de problemas de optimización	42
2.21.	Taxonomía jerárquica de algoritmos metaheurísticos	50
2.22.	Diagrama de flujo de un algoritmo genético básico	55
2.23.	Representación del porcentaje de selección (tipo Ruleta) $\ \ldots$.	56
2.24.	Crossover uniforme (Orozco & Orozco, 2007)	57
2.25.	Crossover N-puntos (Orozco & Orozco, 2007)	57
2.26.	Operador mutación	58
2.27.	Diagrama de Flujo General Algoritmo Genético Propuesto	64
2.28.	Aplicación propia DeViDaAgs v1.0.1	66
3.1.	Ubicación de la edificación propuesta para el estudio	68
4.1.	Vista en Planta de la Edificación Aporticada	78
4.2.	Vista en 3D de la Edificación Aporticada	78
4.3.	Vista en elevación del modelo x-x	79
4.4.	Vista en elevación del modelo y-y	79
4.5.	Espectro de Seudo Aceleraciones para el Sistema Aporticado	81
4.6.	Espectros de las componentes de los registros	85
4.7.	Espectros de las componentes de los registros	86
4.8.	Espectro de diseño (rojo), registro sísmico sin escalar (Azul) y	
	escalado (verde) componente (E-O)	87
4.9.	Espectro de diseño (rojo), registro sísmico sin escalar (Azul) y	
	escalado (verde) componente (N-S)	87
4.10.	registro sísmico escalado	88
4.11.	Espectro del registro sismico artificial "X" construido con 5 %,	
	15%,25%,30%y $35%$ de amortiguamiento	95
4.12.	Espectro del registro sismico artificial "Y" construido con 5 $\%,$	
	15%,25%,30%y $35%$ de amortiguamiento	95
4.13.	Máxima deriva en la dirección x-x	96
4.14.	Máxima deriva en la dirección y-y	96
4.15.	Disposicion de los Disipadores en las dos direcciones	97
4.16.	Vista en 3D de la edificación con disipadores viscosos	97

4.17.	Programa realizado para el diseño de amortiguadores en una	
	edificación "DeViDaAGs"	98
4.18.	Generacion gene_22 Indiv_13, dirección x	00
4.19.	Generacion gene_25 Indiv_15, dirección x	01
4.20.	Generacion gene_26 Indiv_6, dirección x	01
4.21.	Generación gene_15 Indiv_5, dirección y	03
4.22.	Generación gene_28 Indiv_15, dirección y	04
4.23.	Generación gene_30 Indiv_4, dirección y 1	04
4.24.	Distribución de energía sin disipadores	06
4.25.	Distribución de energía con disipadores	06
A.1.	Interface del programa ETABS 2016	31
A.2.	Plantillas predefinidas en el programa	32
A.3.	Sistema de Grillas en las Coordenadas cartesianas 1	32
A.4.	Altura de la edificación	33
A.5.	Modelo del edificio	33
A.6.	Lista de opciones del menú define	34
A.7.	Definición de las propiedades del concreto	34
A.8.	Ventana Para la Creación de la Columna y Vigas	35
A.9.	Modelo Final del Edificio con Columnas y Vigas	35
A.10	.Ventana Para seleccionar Espectro de diseño	36
A.11	.Espectro de Sismo Generado en ETABS	36
A.12	Definición del Caso de Carga de Sismo en la Dirección X $\hfill{\ldots}$. $\hfill{\ldots}$.	37
A.13	Definición del Caso de Carga de Sismo en la Dirección Y \hdots . . . 1	37
A.14	.Definición de la función Tiempo - Historia	38
A.15	.Acelerograma de diseño Moquegua (Junio-2001) Este-Oeste 1	38
A.16	Acelerograma de diseño Moquegua (Junio-2001) Norte-Sur 1	39
A.17	Acelerograma de diseño Ica-pisco (Agosto-2007) Este-Oeste 1	39
A.18	Acelerograma de diseño Ica-pisco (Agosto-2007) Norte-Sur 1	40
A.19	.Acelerograma de diseño Arequipa (Junio-2005) Este-Oeste 1	40
A.20	.Acelerograma de diseño Arequipa (Junio-2005) Norte-Sur 1	41
A.21	.Difiniendo Casos de Carga Sísmica	41

A.22.Caso de Análisis (case1xx) en Ambas direcciones
A.23.Caso de Análisis (case1yy) en Ambas direcciones
A.24.Caso de Análisis (case2xx) en Ambas direcciones
A.25.Caso de Análisis (case2yy) en Ambas direcciones
A.26.Caso de Análisis (case3xx) en Ambas direcciones
A.27.Caso de Análisis (case1xx) en Ambas direcciones
B.1. Ventana principal de la aplicación desarrollada DeViDaAGs 145
B.2. Entrada para la Aplicación de DeViDaAGs
B.3. Entrada de Datos General para la Aplicación de DeViDaAGs 146
B.4. Ejecución de la Aplicación de DeViDaAGs
C.1. Propiedades y dimensiones del Disipador (2000KN) 149

Índice de tablas

2.1.	Sismo de diseño en edificaciones, [VISION 2000, SEAOC]	11
2.2.	Caracterización de daños [VISION 2000]	12
2.3.	Deriva máximo de entrepiso, (comité VISION 2000)	14
2.4.	Deriva máxima de entrepiso, niveles de desempeño $(\mbox{ATC-40})$.	18
4.1.	Características mecánicas de los materiales	74
4.2.	Dimensiones de las vigas	75
4.3.	Dimensiones de las Columnas	76
4.4.	Cargas consideradas para el metrado	77
4.5.	Parámetros empleados para el análisis Sismorresistente	80
4.6.	Peso de cada niveles de la edificación	82
4.7.	Periodos de vibración de modos	82
4.8.	Deriva de entrepiso para la dirección x-x	83
4.9.	Deriva de entrepiso para la dirección y-y	83
4.10.	registros sísmicos para realizar el análisis dinámico tiempo historia	86
4.11.	Derivas de entrepiso en la dirección (X-X) $\hfill \ldots \hfill \hfill \ldots \hfill \hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \hfill \hfill \hfill \ldots \hfill \hfill$	88
4.12.	Derivas de entrepiso en la dirección (Y-Y) $\hfill \ldots \hfill \hfill \ldots \hfill \hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \hfill \ldots \hfill \hfill \hfill \ldots \hfill \hfi$	89
4.13.	Eleccion de sismos de diseño con R=1, en la dirección (X-X)) $\ .$	90
4.14.	Eleccion de sismos de diseño con R=1, en la dirección (Y-Y) $\ . \ .$	90
4.15.	Clasificación según tipo de Estructura, Multi-Hazard Loss Esti-	
	mation Methodology [HAZUS, 2010]	92
4.16.	Niveles de desempeño y derivas objetivo (HAZUS Y SEAOC	
	VISION 2000)	93
4.17.	Individuos del Frente de Pareto, en la dirección X $\ .\ .\ .$.	99

4.18. Individuos del Frente de Pareto, en la dirección X $\ .\ .\ .\ .\ .$. 100
4.19. Individuos del frente de pareto, en la dirección Y \ldots . 102
4.20. Individuos del frente de pareto, en la dirección Y $\ldots\ldots\ldots$ 103
4.21. distribución final de los dispadores
4.22. Fuerzas de los disipadores "X"
4.23. Fuerzas de los disipadores "Y"
4.24. Agrupación de los dispositivos a emplear
C.1. Rigidez del Brazo Metálico [AISC Steel Construcción] 148

Introducción

El Perú se encuentra en una zona altamente sísmica, razón por la cual la amenaza de la ocurrencia de un evento sísmico es alto. Estos desastres naturales son uno de los peligros más grandes del planeta, como los de Chile (1985), EE.UU (1989,1994), Japón (1995). Indonesia (2004,2005), México (1985,2017), así como del Perú sismos (1970, 2001, 2007, etc.), afectando gravemente los elementos estructurales debido a que estos absorben la energía de entrada del sismo y los no estructurales, asi mismo ocasionando pérdidas económicas considerables, como pérdidas humanas dejando además heridos y damnificados, pero en la actualidad el desarrollo de nuevas tecnologías como sistemas de mitigación de energía como los aisladores de base y disipadores viscosos ha permitido hacerles frente y disminuir sus impactos.

En los últimos años se ha visto la necesidad y el desarrollo de metodologías de diseño sísmico basado en desempeño estructural. Siendo una de sus características en comparación con los métodos convencionales la exigencia de cierto comportamiento estructural bajo condiciones de diferentes cargas sísmicas inciertas expresadas en términos probabilísticos. Incrementándose los trabajos de investigación en nuestro pais para encontrar procedimientos y métodos efectivos para la distribución de amortiguadores viscosos en una estructura. Algunos diseñadores mencionan un proceso de prueba error, es decir, un método iterativo de tanteo con el propósito de encontrar un control de respuesta estructural. Estos sistemas son métodos de diseño y reforzamiento de edificaciones como sistemas de protección sísmica, que permiten aumentar el nivel de desempeño de la edificación durante la severidad de una actividad sísmica. para ello el presente trabajo de investigación esta centrada en desarrollar una aplicación que interactue con programa ETABS 2016 (Extended Three Dimensional Analysis of Building System), para su correcta distribución de amortiguadores y como objetivo mejore el desempeño estructural frente a sismos intensos.

En la actualidad el uso las técnicas Metaheurísticas en la ingeniería son frecuentes y han demostrado una gran capacidad de selección del mejor elemento de un conjunto de elementos posibles de acuerdo a un criterio de selección dado. Para esto se deben emplear métodos de optimización que permitan conocer los mejores valores que puede asumir dicho conjunto de variables (Dantzig, 2010).

Por ejemplo los Algoritmos Genéticos (AG) son metodologías para la optimización probabilística basada en la teoría de la evolución en sus tres etapas, selección, cruzamiento y mutación, es decir son algoritmos de búsqueda basados en la mecánica de la selección natural y de la genética. Estos algoritmos utilizan la información histórica para encontrar nuevas rutas de búsqueda de una solución óptima del problema a resolver (Orozco y Orozco, 2007[34]).

Para alcanzar un diseño optimo de un edificio aporticado de concreto armado lo cual cuenta con amortiguadores viscosos no lineales, se plantea una función objetiva a partir de los parametros de la edificación en función a las derivas de entrepiso DDE_i y variación de disipación de energía VDE_i con sus restricciones según el reglamento Peruano E.30, diseño de sismoresistente y norma Americana para análisis sísmico por desempeño. Finalmente se realiza una aplicación Design Viscous Dampers Genetic Algorithms (DeViDaAGs), bajo sintaxis de lenguaje de programación de Visual FORTRAN integrando con la interfaz de programación de aplicaciones (API) ETABS 2016, y como resultado permite que la estructura tenga una mejor absorción de esfuerzos, nivel de control de la respuesta estructural y que esta cumpla sus niveles de serviciabilidad como al inicio y/o después de una acción sísmica, durante su vida útil, para ello se usa la técnica de algoritmos genéticos como una herramienta para obtener una correcta distribución de estos dispositivos disipadores de energía, entregando también una serie de posibles soluciones, dentro de las cuales se escoge la que entregue mejores resultados con respecto a los criterios de diseño deseado

En el diseño sísmico por desempeño a lo largo de los años, se hicieron muchos esfuerzos para desarrollar la ingeniería sísmica basada en desempeño, pueden diferir en notaciones y terminologías, pero no en los conceptos. Todos presentan varios niveles y objetivos de desempeño. Se presentará un resumen de los tres grandes y más conocidos esfuerzos que se han llevado a cabo y son: VISION 2000, FEMA 273/356, ATC 40.

Capítulo I: Problema

1.1. Planteamiento del problema

La constante ocurrencia de sismos en nuestro territorio ha dejado enseñanzas que debemos estudiar, analizar y poder mitigar el riesgo sísmico al que están expuestas nuestras edificaciones. Asi como en las pérdidas materiales, las vidas humanas han sido considerables. Los daños observados en los terremotos ocurridos durante los últimos 20 años en Ica, Nazca, Tacna y Moquegua han mostrado la elevada vulnerabilidad sísmica que presenta nuestros edificios.

A base de experiencia de los últimos años en que se ha podido registrar con mayor extensión los movimientos sísmicos, se ha observado que tanto las aceleraciones como las deformaciones que se pueden desarrollar durante un sismo severo e incluso moderado son muy altas, ademas de las incertidumbres en la determinación de las solicitaciones y capacidades de la estructura. Esta estrechamente ligado la estructura a su capacidad de disipar energía y la disipación se presenta en la vigas y columnas en las que se forman rotulas plásticas, sin embargo la formación de rotulas plásticas implica un alto nivel de daños.

El diseño sismorresistente convencional de estructuras está basado en la ductilidad de los elementos estructurales en los edificios, sin embargo, en el presente existen modernas técnicas de protección sísmica (disipación de energía y aislamiento en la base). Actualmente existen estudios sobre disipadores de energía a nivel internacional. En el Perú ya existen experiencias en edificios con disipadores viscosos, son varias las aplicaciones en edificios nuevos y existentes pero aún existen vacíos en aplicaciones e investigaciones en edificios existentes y como también en edificios nuevos para la correcta distribución y ubicación de disipadores de energía y que estudien cómo será el comportamiento sísmico de dichos edificios a nivel de desempeño luego de añadir los amortiguadores viscosos no lineales.

A nivel local nuestro territorio se encuentra en una zona de alta peligrosidad sísmica y la región de departamento de Huancavelica esta inmerso dentro de la zona como la Provincia de Castrovirreyna y Huaytara por la cercanía a la placa de Nazca y encontrarse en zona 4, según la norma Peruana E.30 2016 de diseño de sismorresistente.

La habilidad y la experiencia del diseñador podrían llevar a diseños completamente distintos, encontrándose en una dificultad creciente con métodos convencionales o secuenciales, métodos de prueba error, es preciso mencionar como un proceso iterativo por tanteo, es decir, se supondrá un cierto valor inicial con el cual se realizará todo el proceso de diseño, luego se verificará si se cumple con el control de la respuesta, si esto no es así se adoptará otro valor y se repetirá el proceso hasta llegar al control de la respuesta deseada, esto indica poca convergencia en los resultados, la mejora de estos métodos convencionales es con el empleo de ordenadores, permitiendo que los análisis sean más precisos, reales y eficaces consiguiendo diseños mas económicos con respecto a los tradicionales. Por ello se plantea en el presente trabajo de investigación el empleo del uso de sistemas de protección sísmica con una correcta distribución de amortiguadores viscosos no lineales, mediante uso de algoritmos genéticos con el objetivo de mejorar el nivel de desempeño de la edificación durante un sismo y que esta técnica sustituya al diseño convencional.

1.2. Formulación del problema

1.2.1. Problema general

 ¿En qué medida el diseño de una edificación aporticada con la distribución óptima de amortiguadores viscosos no lineales mediante algoritmos genéticos mejorará el desempeño frente a sismos intensos?.

1.2.2. Problemas específicos

- ¿Cuáles son las variables más importantes para obtener un diseño sismorresistente eficiente para un sistema de distribución con amortiguadores viscosos no lineales mediante algoritmos genéticos?.
- ¿Cuáles serían las medidas de las derivas de entrepiso de una edificación frente a sismos intensos luego de ser reforzada con los Amortiguadores Viscosos no Lineales?.
- 3. ¿Cuáles serían los criterios de diseño que se deben emplear para el diseño de una edificación aporticada de concreto armado con distribución óptima de amortiguadores viscosos no lineales frente a sismos intensos?.
- 4. ¿Cuáles serían los resultados obtenidos al implementar Amortiguadores Viscosos no Lineales en la edificación en estudio, el nivel de desempeño y costo obtenido con la misma edificación sin disipadores?.

1.3. Objetivo: General y especifico

1.3.1. Objetivo general

 Determinar en qué medida el diseño de una edificación aporticada con la distribución optima de amortiguadores viscosos no lineales mediante algoritmos genéticos mejora el desempeño frente a un sismos.

1.3.2. Objetivos específicos

- Determinar las variables más importantes para obtener un diseño sismorresistente eficiente para un sistema de distribución con amortiguadores viscosos no lineales mediante algoritmos genéticos.
- Determinar las medidas de las derivas de entrepiso de una edificación frente a sismos intensos luego de ser reforzada con los amortiguadores viscosos no lineales.
- Determinar los criterios de diseño que se deben emplear para el diseño de una edificación aporticada de concreto armado con distribución optima de amortiguadores viscosos no lineales frente a sismos intensos.
- 4. Evaluar los resultados obtenidos al implementar amortiguadores viscosos no lineales en la edificación en estudio y comparar el desempeño y costo obtenido con la misma edificación sin disipadores.

1.4. Justificación

En muchos proyectos de edificaciones según el uso se ha comprobado, que se puede tener dificultades a la hora de diseñar utilizando un diseño convencional, la habilidad y la experiencia del diseñador podrían llevar a diseños completamente distintos y la complejidad de la estructura tratada, esto conlleva una dificultad creciente en los reanálisis y los rediseños consecutivos y también el pretendido uso de la estructura podría alejar al diseño de un modelo económico.

Todos sabemos que estamos próximas a recibir un gran sismo y la falta de implementación tecnológica que hoy en día se tiene, para buscar y brindar mayor seguridad a las estructuras y así dar como una alternativa segura y de calidad para el diseño estructural de edificaciones tomando los objetivos de desempeño estructural, Ocupación, Importancia de las funciones dentro de la estructura, Costo de la interrupción de las actividades, Costo de reparación e Importancia de la estructura para el propietario.

Otro aspecto a considerar es, en el diseño estructural por ejemplo cuando no se cumplen los desplazamientos permisibles, lo que se acostumbra es aumentar las secciones de la estructura para así aumentar su rigidez y resistencia. podemos en dado caso aumentar no solo la rigidez, sino también el amortiguamiento como se dijo antes, en la práctica suele incrementarse la rigidez de los miembros de la estructura para así poder cumplir con los desplazamientos máximos permisibles, lo que representa una disminución del periodo fundamental de la estructura aumentando peso de la edificación, aceleración, velocidades en la estructura exponiendo a sufrir mayores daños frente a una actividad sísmica.

Es por eso se justifica el planteamiento del uso de dispositivos amortiguadores que representa una buena opción para poder disipar energía y así evitar el aumento en la rigidez de los miembros de la estructura. Si bien el hacer uso de los amortiguadores representaría también un costo adicional, en algunos casos representa un costo menor al aumento en la rigidez, siempre y cuando se realice una eficiente distribución de los amortiguadores.

Por lo tanto, una investigación sobre el diseño de distribución optima de amortiguadores viscosos, mediante el uso de un modelo metaheurístico basado en algoritmos genéticos, es fundamental para encontrar soluciones sostenibles buscando tener una configuración deformada de la estructura lo más próxima posible a la configuración máxima permisible de Reglamento Nacional de Edificaciones E.030 (una configuración muy por debajo de los limites reglamentarios significaría un sobrecosto no deseado del proyecto), y así mismo se busca que la energía disipada sea lo más uniforme posible a lo alto del edificio.

El desarrollo y la implementación de una aplicación (DeViDaAGs v1.0.0), en su primera versión, es eficiente para definir la ubicación y capacidad de dispositivos viscosos no lineal para lograr un nivel de desempeño requerido en estructuras bajo las excitaciónes sísmicas, sirvan como fuente de apoyo en los cursos avanzados de ingeniería sismorresitente, contribuyendo con su practicidad en el área de investigación sísmica de los diversos desarrollos profesionales de ingeniería civil y difundir estos nuevos sistemas que se propone para las edificaciones esenciales importantes y/o comunes como, colegios, hospitales, clínicas. oficinas de grandes importancias etc, incluyendo también los puentes que cuenten con este sistemas de protección antisísmico.

Capítulo II: Marco teórico

2.1. Antecedentes

2.1.1. Antecedentes internacionales

María P (2012), en esta tesis se pretendió analizar los algoritmos genéticos, así como los operadores y los parámetros que los definen, con el fin de diseñar y desarrollar un nuevo algoritmo genético, denominado elitista, con propósito de obtener el peso mínimo de la estructura bajo sus restricciones ambientales de tensión y coeficientes de seguridad según su normativa usada. Al aplicar el algoritmo genético elitista a estructuras metálicas en dimensiones 2D Y 3D, al comparar los resultados obtenidos con dicho algoritmo empleando el programa de cálculo de estructuras convencional CYPECAD y verificando los resultados obtenidos con el módulo CIVILFEM y para el calculo de elementos finitos el ANSYS se logro satisfacer un buen resultado con peso mínimo y secciones optimizadas.

El desarrollo para su entorno gráfico, para la modificación y el ajuste de los parámetros y operadores que definen el algoritmo genético, se desarrollo en lenguaje C++, tratando de realizar módulos lo más portables posibles entre diferentes sistemas operativos (Windows, UNIX, MAC)

Es preciso mencionar de esta tesis como se realizo La optimización llevada a cabo mediante el algoritmo genético elitista, donde los resultados muestran seguras, menos sobredimensionadas que las obtenidas con el programa de cálculo CYPE, tanto para estructuras en dos como en tres dimensiones, debido a la asignación aleatoria de secciones. Estas soluciones presentaron secciones a posterior rechazadas y que, sin embargo, desde un punto resistente podrían ser factibles. Además, las combinaciones de distintas secciones obtenidas para una misma estructura, con una diferencias entre ellas es pequeñas, y esto permitieron seleccionar aquella desde un punto de vista constructiva, la más adecuada con cuyas secciones de obtener en el mercado de manera fácil.

Brambila Neri (2012) En este trabajo de investigación se propuso una metodología para el diseño de edificio de estructura metalica, con una distribución optima de disipadores. La distribución se desarrolla con el uso mediante los Algoritmos Geneticos Multiobjetivo, propniendose de dos indices de optimizacion una ligado a distorsiones de entrepiso y otro ligado con la regularidad con la que disipa la energía en la altura del edificio. Como ejemplo se realiza el diseño de un edificio metálico de 10 pisos con distribución optima de amortiguadores viscosos no lineales comparando con el diseño de un edificio inicialmente planteada de la misma geometría y misma ubicación sin usar amortiguadores. los resultados muestran evidencias el ahorro en el costo de la estructura al usar los amortiguadores como elementos concebidos ahorrando en un 20%.

2.1.2. Antecedentes nacionales

Ricardo O (2008), en esta tesis realiza el modelo dinámico tridimensional computacional de una edificación existente de categoría esencial (centros hospitalarios) y proponer un reforzamiento con sistemas pasivos de control de daño para reducir el riesgo sísmico, mostrando su comportamiento dinámico lineal tiempo historia con la incorporación de cada uno de los cuatro tipos diferentes de disipadores pasivos de energía trabajando en el rango inelástico.

Presenta una discusión más detallada del desempeño de los dispositivos pasivos y de los sistemas, con énfasis en el desarrollo de modelos matemáticos apropiados. Se presentan dos grupos, los dispositivos histeréticos y los dispositivos viscoelásticos. Incluidos en el primer grupo están los dispositivos que peran en los principios tales como la fluencia de metales y los friccionantes por deslizamiento. El segundo grupo consiste de dispositivos que involucran deformación de sólidos viscoelásticos y fluidos viscosos en donde se encuentran aquellos que emplean orificios para el paso de los fluidos.

Hace un análisis comparativo de los resultados obtenidos del modelo empleado con cada de los cuatro tipos de disipadores de energía trabajando en el rango inelástico. Se realiza una comparación del modelo sin disipadores de energía con el modelo con disipadores viscosos no lineales, disipadores viscoelásticos, disipadores por fricción y disipadores por fluencia. Comparándose los períodos, frecuencias, desplazamientos, fuerzas cortantes, momentos torsores, momentos de volteo, etc. Finalmente se comparan las demandas de energía sísmica para cada uno de los cuatro tipos de disipadores de energía.

2.2. Bases teóricas

2.2.1. Diseño sísmico convencional y tendencias actuales

El Perú es un país localizado en una zona de alta peligrosidad sísmica por lo tanto esta amenaza natural deberá ser siempre considerada en cualquier diseño y construcción civil que se lleve a a cabo. Desde 1963 existen en nuestro medio normas locales para el diseño de edificaciones sismorresistente, siguiendo la practica de normas internacionales, aunque fuertemente influenciado por la practica norteamericana, en particular la de california a través de su Asociación de Ingenieros estructurales (SEAOC)¹. La implementación de los códigos de diseño sismorresistente para edificaciones en el Perú, se inicio en el año 1964. El primer proyecto de la Norma Peruana, se basó en el código de la Asociación de Ingeniería Estructural de California (SEAOC). El año 1970 se publicó la primera Norma: posteriormente, la segunda y tercera en los años 1977 y 1997 respectivamente. Actualmente la Norma Técnica de Edificación es la E-030

¹SEAOC (Seismology Commitee of the Structural Engineers Association of California) ha sido el pionero en formular las primeras disposiciones sísmicas, en los Estados Unidos y en muchos países. En 1959 publicó varias ediciones de las Recommended Lateral Force Requirements ans Commentary, lo que se conocen como el libro Azul.

(NTE-030), publicada en el año 2016.

La filosofía de diseño sismorresistente definida por la Norma Técnica E.030 en el artículo 3, consiste en evitar la pérdida de vidas, asegurar la continuidad de los servicios básicos y minimizar los daños a la propiedad. Sin embargo, dicha norma reconoce el hecho de que dar protección absoluta a una estructura frente a todos los sismos no es factible, por lo que propone los siguientes principios: La estructura no debe colapsar ni causar daños a las personas ante sismos severos y; deberá soportar movimientos sísmicos moderados con daños dentro de límites aceptables".

Una alternativa que permite cumplir con los objetivos del diseño sismorresistente planteados por la norma E.030, es la inclusión de sistemas de protección modernos en las estructuras. Estos pueden ser dispositivos de aislamiento sísmico o de sistemas de disipación de energía.

Existen diversos criterios de desempeño propuestos por diferentes comités en todo el mundo. Entre dichos comités tenemos a la Sociedad de Ingenieros Estructurales de California (SEAOC), el programa HAZUS 99, FEMA 273 y 374, ATC-40², entre otros. El SEAOC, a través del comité Visión 2000, intentó mejorar los códigos actuales de manera significativa. Este comité se centró en definir qué es un sismo frecuente, raro o muy raro; y en describir detalladamente el desempeño que las estructuras deben alcanzar para cada tipo de evento sísmico.

2.2.2. Propuesta de la comite VISION 2000

Fue iniciado en 1992 por la **Structural Engineers Association of California**, de la que su primer esfuerzo de significante impacto es VISION 2000, reporte que es citado como SEAOC (1995), y su aplicabilidad es la rehabilitación de estructuras existentes y el diseño de nuevas.

Se establecen cuatro niveles de severidad en las solicitaciones sísmicas, cada uno de los cuales se define por un sismo de diseño dado que los sismos son tra-

 $^{^2\}mathrm{ATC}\xspace{-40}$ (Consejo de Tecnología Aplicada) Des
de 1994 preparó una metodología para la evaluación y adaptación sísmica de e
dificaciones de concreto existentes.

tados como sucesos aleatorios, la cuantificación de sus efecto en las estructuras solo puede hacerse en términos de probabilidad y riesgo. De esta manera los sismos de diseño si definen una función de los periodos medios de retorno de tales eventos o en función de la probabilidad de excedencia durante un determinado tiempo de exposición que para edificaciones se suele considerar de 50 años.

Sismo de Diseño	Probabilidad de excedencia 50 años de exposición (%)	Periodos de retorno (años)
Sismos frecuentes	- 69	43
Sismos ocasionales	50	72
Sismos raros	10	475
Sismos muy raros	5	970

Tabla 2.1: Sismo de diseño en edificaciones, [VISION 2000, SEAOC]

2.2.2.1. Niveles de desempeño de las edificaciones

En el informe presentado por el comité VISION 2000 se incluye una amplia descripción exhaustiva de los niveles permisibles o tolerables de daño asociados a cada uno de los cuatro niveles de desempeño indicados para varios sistemas y subsistemas del edificio.

El nivel de desempeño marca los limites o tolerancias los cuales están basados en los siguientes criterios:

- Eventuales daños físicos en elementos estructurales y no estructurales.
- Cuando se compromete la seguridad de los ocupantes de la edificación producto de estos daños y;
- La operatividad de la edificación luego del evento sísmico [SEAOC, 1995; ATC, 1996]

Para poder precisar los objetivos del diseño sismorresistente es necesario adoptar cierta clasificación para el grado de daño en una edificación luego de un sismo. Al respecto, las propuestas del SEAOC[40], el resumen en la siguiente tabla 2.2:

VISION 2000	Descripción
Completamente Operacional	La edificación permanece en condiciones aptas para su uso normal, se esperan daños mínimos. Todos los siste- mas de abastecimiento y lineas vitales deben estar en funcionamiento, de tal manera que el edificio entre en funcionamiento inmediatamente.
Ocupacional	No hay daño significativo a la estructura, los compo- nentes estructurales son seguros y mantienen su fun- ción. El edificio puede ser utilizado luego de pequeños arreglos.
Seguridad de vida	Daño significativo a los componentes estructurales con reducción sustancial en la rigidez pero tienen un mar- gen de seguridad antes del colapso. Elementos no es- tructurales seguros pero con daño, la edificación podrá funcionar luego de ser reparada y reforzada.
Cerca del colapso	Daño sustantivo estructural y no estructural. Existe una gran degradación de la resistencia y rigidez de la estructura, solo queda un pequeño margen para llegar al colapso.

Tabla 2.2: Caracterización de daños [VISION 2000].

Con este criterio propuesto por el Comité VISION 2000, la curva de capacidad puede ser dividida en sectores basados en los niveles de desempeño antes descritos. Para sectorizar la curva de capacidad, el primer paso es simplificar la curva a un modelo bilineal junto con señalar el punto de fluencia efectiva, el sector a la izquierda de éste punto representa el primer sector de los cinco totales. Como segundo paso, consiste en dividir el rango inelástico de la curva simplificada en los cuatro sectores restantes. En la Figura 2.1 se muestra la curva de capacidad sectorizada con los niveles de desempeño correspondientes.

Figura 2.1: Sectorización de la Curva Capacidad

La figura 2.2 muestra el desempeño mínimo que deben tener estos tres tipos de edificios en los 4 niveles de diseño considerado.

Figura 2.2: Desempeño de edificios (Comite Vision 2000.)

Cada tipo de edificio se identifica por un color. Los casilleros que quedan

a la derecha de un tipo de edificio en particular, representan comportamiento inaceptable. Los casilleros en blanco representan comportamiento inaceptable para cualquier tipo de edificio.

2.2.2.2. Daño estructural asociado a la deriva del edificio

Existe una relación entre la deriva de entrepiso y el daño durante un evento sísmico. A mayor deriva de entrepiso mayor el daño en el edificio.

Distorsión de piso	Desempeño
$\gamma < 0,002$	Operacional
$0,002 < \gamma < 0,005$	Ocupacional
$0,005 < \gamma < 0,015$	Seguridad de vida
$0,011 < \gamma < 0,025$	Prevención de colapso
$\gamma \geq 0{,}025$	Colapso

Tabla 2.3: Deriva máximo de entrepiso, (comité VISION 2000).

2.2.2.3. Criterios de diseño sismorresistente

los objetivos del diseño sismorresistente se definen en función del nivel de desempeño que, de acuerdo a su importancia, deben tener las edificaciones para cada uno de los niveles de sismo a los que puedan estar sometidas durante su vida útil. Así por ejemplo, es un objetivo del diseño sismorresistente que toda edificación de uso común, permanezca sin daños para sismos frecuentes (periodo de retorno de aproximadamente 50 años). Y es una aspiración de la ingeniería actual que las edificaciones importantes puedan permanecer operacionales aun en los sismos muy raros (aquellos con periodo de retorno de aproximadamente 1000 años). Para lograr estos objetivos generales, la Ingeniería Sismorresistente define algunos criterios que sirven de marco global dentro del cual se desarrollan las reglas de buena práctica y se sustenten los procedimientos de análisis y diseño.

2.2.2.3.1. Diseño para sismos frecuentes

Como se recordara se ha convenido en denominar sismos frecuentes y sismos ocasionales a aquellos cuyo periodo medio de retorno es de 40 y 70 años respectivamente.

De acuerdo con los objetivos de diseño sismorresistente las edificaciones comunes deben permanecer sin daño durante los sismos frecuentes y mostrar un daño muy reducido (nivel Operacional) durante los sismos ocasionales. En cambio las edificaciones esenciales y las edificaciones de seguridad crítica deben permanecer completamente operacionales durante estos dos niveles de sismo. Para lograr que el nivel de daño en las edificaciones sea muy reducido o inexistente durante los sismos frecuentes u ocasionales, es necesario dotar a las estructuras de una resistencia mayor o por lo menos igual a la necesaria para que estas puedan comportarse fundamentalmente dentro del rango elástico durante todo el sismo. De acuerdo a la importancia de la estructura, se podrá aceptar pequeñas incursiones en el rango inelástico pero sin pérdida de rigidez o resistencia.

Para lograr que una estructura se comporte fundamentalmente en régimen elásticamente durante los sismos frecuentes u ocasionales será necesario asegurar por un lado que su resistencia sea mayor o igual que la resistencia demandada por el sismo y por otro que el nivel de agrietamiento y daño que acompañe las cortas incursiones inelásticas será reducido y fácilmente reparable.

2.2.2.3.2. Criterios de diseño para sismos importantes

Dotar a las estructuras de una resistencia lateral tan elevada como la demandada en estructuras elástica por sismos con periodos de retorno de 500 o 1000 años, es en muchos casos imposible o injustificable, dada la baja probabilidad de que estos eventos se presenten durante la vida útil de una estructura. La Ingeniería Sismorresistente reconoce este hecho y permite reducir la resistencia lateral de las estructuras a una fracción de la máxima solicitación elástica a cambio de garantizar un comportamiento post elástico adecuado. Como se recordara, el cociente entre la demanda de resistencia elástica y la
resistencia lateral de una estructura se denomina factor de reducción de fuerza sísmica.

Para lograr el comportamiento post elástico adecuado, el diseño sismorresistente ha tenido como idea central en las últimas décadas, el control en las demandas sísmicas de ductilidad. Solo en años recientes es que se ha comenzado a poner mayor interés en conceptos de energía y daño, y se ha logrado configurar nuevos criterios basados en las demandas sísmicas de energía.

2.2.2.3.3. Criterios de diseño basados en demandas de ductilidad

Al dotar a una estructura de una resistencia menor a la demanda elástica de un evento importante, se espera que cuando se produzcan estos sismos muy raros la estructura tenga severas incursiones inelásticas, tal vez un daño elevado, pero se aspira a que no llegue a colapsar.

Mientras más se reduzca la resistencia lateral de una edificación, mayores serán las incursiones inelásticas y también mayor el daño. Una estructura, cuando menos resistente sea, iniciara su comportamiento inelástico con un desplazamiento más pequeño. Es decir a mayor factor de reducción de fuerza sísmica mayor será la ductilidad demandada por el sismo.

En términos generales se espera que según el sistema estructural, una edificación pueda desarrollar sin peligro un cierto nivel de ductilidad. Así por ejemplo, los estudios desarrollados con la albañilería confinada en el Perú, muestran que el inicio del comportamiento inelástico se produce para una distorsión de entrepiso de 1/800 pudiéndose alcanzar distorsiones de hasta 1/200 con posibilidad de reparación. Es decir, si las demandas de ductilidad global se mantuvieran por debajo de 4 o 5, se podría reducir el daño a niveles que permitan la reparación efectiva de este tipo de estructuras.

2.2.3. FEMA 273/356

En paralelo con Vision 2000, la U.S. (FEMA³), fundó un proyecto para la rehabilitación de edificios. De este proyecto resultaron los reportes FEMA 273 (1996) y el FEMA 274 (1996)[18], los que fueron reevaluados y modificados, para posteriormente ser publicados como un estándar del ASCE (el FEMA 356, 2000 estandarizado como ASCE/SEI 41-06, 2007)[1]. El marco conceptual es similar al de Vision 2000, asocia niveles de desempeño con niveles de peligro; pero los niveles de peligrosidad sísmica son distintos (50/50, 20/50, 10/50 y 2/50) y define los niveles de desempeño como operacional ("operational"), ocupación inmediata ("immediate ocupancy", IO), seguridad de vida ("life safety", LS), y prevención del colapso ("collapse prevention", CP).

En los reportes FEMA, el procedimiento para la estimación del objetivo de desplazamiento es la aplicación de una serie de factores de modificación al espectro elástico de desplazamiento en el primer modo. Estos factores son un intento de tomar en cuenta la contribución de los múltiples grados de libertad, diferencias entre los desplazamientos elásticos e inelásticos, efectos $P - \Delta$ y el efecto de las diferentes formas de histéresis.

2.2.4. Propuesta ATC-40

El estado de California comisionó el desarrollo de guías para la evaluación sísmica y retrofit para estructuras de concreto armado este proyecto resultó ser el ATC 40[2].

El marco conceptual presentado para la PBEE⁴ es similar al de Vision 2000, y por tanto su implementación depende de la capacidad de predecir demandas sísmicas, como son las derivas de los pisos y rotación de rótulas. Al igual que en los reportes FEMA, el análisis estático no lineal (pushover), se recomienda como un método de elección de los ingenieros estructurales. La predicción del

³FEMA (Federal Emergency Management Agency) Código Americano que estable las guías básicas para la construcción y rehabilitación de Edificaciones sometidas a Fenómenos Sísmicos.

 $^{^4\}mathrm{PBEE}$ (Performance-Based Earthquake Engineering) Ingeniería Sísmica Basada en Desempeño

objetivo de desplazamiento se basa en el método del espectro de capacidad; en este método la curva pushover (cortante en la base vs desplazamiento en el techo), se convierte en una curva de capacidad equivalente a un sistema de un grado de libertad, y de la intersección de esta nueva curva con un espectro de respuesta modificado, se obtiene un punto de desempeño. El espectro de respuesta modificado, se obtiene a partir de un espectro de diseño con un 5 % de amortiguamiento.

2.2.4.1. Limites de los niveles de desempeño por ATC-40

Para estos requerimientos se incluyen capacidad de fuerza vertical, resistencia de carga lateral y distorsión lateral. La capacidad de carga de gravedad de la edificación debe permanecer intacta para un desempeño aceptable en cualquier nivel. En los elementos donde se perdió la capacidad de carga de gravedad, la estructura debe ser capaz de redistribuir la carga a otros elementos existentes.

	Nivel de Desempeño			
Límite de Distorsión	Ocupación Inmediata	Daño Controlado	Seguridad	Estabilidad Estructural
Distorsión total máximo	0.01	0.01-0.02	0.02	$0,33\left(\frac{V_i}{P_i}\right)$
Distorsión inelástico maximo	0.005	0.005-0.015	No limita	No limita

Tabla 2.4: Deriva máxima de entrepiso, niveles de desempeño (ATC-40)

Para el comportamiento de la estabilidad estructural la deriva total máximo en el nivel *i*, en el desplazamiento de desempeño no debe exceder la cantidad de $0,33\left(\frac{V_i}{P_i}\right)$. Donde V_i es la fuerza cortante total en el nivel *i* y P_i es la carga de gravedad total (carga muerta mas un porcentaje de la carga viva).

2.2.5. Deriva de piso

Se define como la distorsión de piso o el máximo desplazamiento relativa de entrepiso, donde para edificios de concreto armado es 0.007, como se establece en la norma de diseño sismorresistente E-0.30, para estructuras de concreto armado. La norma Chilena NCh 433-96, establece una deriva de entrepiso de 0.001 (elástica), la Norma Ecuatoriana CEC-2000, establece una deriva de entrepiso de 0.02, y la Norma de Colombiana NSR-98, establece una deriva de piso de 0.01. En la siguiente ecuación 2.1 se describe la forma de obtener la deriva de piso en estructuras de concreto armado.

Figura 2.3: Estado de daño según la deriva de piso [Velásquez.V.(2006)]

2.2.6. Sistemas de control de la respuesta dinámica

El diseño sismorresistente por el Reglamento Nacional de Edificaciones E-030 orienta sus principios en que la capacidad de las estructuras para disipar la energía entregada por el sismo se da por medio de las deformaciones elásticas e inelásticas las que ocasionan un daño controlado de la estructura.

La energía que recibe una estructura durante un terremoto puede ser soportada de tres maneras diferentes:

 Por Resistencia: Consiste en dimensionar los elementos estructurales de tal modo que tengan suficiente resistencia como para soportar las cargas sísmicas sin agrietarse. Éste método requiere unas sobredimensiones bastante importantes de los elementos estructurales y tiene algunos riesgos de rotura frágil.

- Por Ductilidad: Consiste en dimensionar los elementos de tal manera que parte de la energía del sismo sea disipada por deformaciones plásticas de los propios elementos estructurales. Esto implica que la estructura recibirá daños en caso de sismo, pero sin llegar a colapsar. Reduce el riesgo de rotura frágil y la dimensión necesaria de los elementos estructurales es bastante menor.
- Por Disipación: Consiste en introducir en la estructura elementos cuyo fin es disipar la energía recibida durante un terremoto, y que no tienen una función resistente durante el resto de la vida normal del edificio.

En la figura 2.4 se muestra el espectro de aceleraciones, el valor del periodo fundamental "TA" se ha determinado considerando sólo el amortiguamiento propio o natural que la estructura posee debido a las propiedades de los materiales que la componen. Se ha supuesto que dicho amortiguamiento es de un 5% del amortiguamiento crítico y además para este periodo se le asocia un desplazamiento espectral "dA" (punto "A").

Figura 2.4: Espectro de desplazamiento al incrementar rigidez y amortiguamiento [Hart y Wong, 2000]

De la siguiente figura 2.5 del espectro de aceleraciones, cuando se aumentan

las secciones de los miembros estructurales (columnas, muros, etc.) con el fin de rigidizar, se disminuirá el desplazamiento espectral como se muestra en la Figura 2.4 y se incrementará la aceleración (fig. 2.5) de la estructura (punto "**B**"), y cuando se adiciona la razón de amortiguamiento crítico de 5% a 15%, mediante disipadores de energía la aceleración de la estructura disminuye pasando del punto "**A**" hacia el punto "**C**".

Figura 2.5: Espectro de aceleraciones al incrementar la rigidez y el amortiguamiento [Hart y Wong, 2000]

2.2.6.1. Balance de energía

Representa un ingreso de energía en el sistema estructural. Donde esta energía de entrada se convierte en cinética y potencial [45], las cuales serán absorbidas o disipadas a través de calor. La energía cinética se inicia con el movimiento de la estructura ante cargas externas (eventos sísmicos). La energía potencial se almacena como energía de deformación elástica y deformación histerética. Para que el sistema estructural sea capaz de soportar las solicitaciones sísmicas, la capacidad de respuesta de esta debe ser mayor que la demanda sísmica.

A continuación se presenta la ecuación de balance de energía.

$$E_K(t) + E_D(t) + E_S(t) + E_H(t) = E_I(t)$$
(2.2)

Donde:

 E_K : Energía cinética de la estructura

 E_D : Energía disipada por amortiguamiento

 $E_{\cal S}$: Energía de deformación elástica

 E_H : Energía de deformación inelástica

La inclusión de sistemas de protección sísmica regula la energía de ingreso al sistema estructural (sistemas de aislación) o incrementar la disipación de energía por amortiguamiento (amortiguadores). Al reducir la energía de ingreso al sistema, se evita que la estructura entre en un régimen no lineal.

En la Figura 2.7 Se puede apreciar la influencia de la incorporación de dispositivos disipadores de energía en la reducción de la energía histerética disipada en la estructura en forma de daño estructural.

(a) Estructura sin disipadores(b) Estructuras con disipadores de energíaFigura 2.7: Balance de energía

2.2.6.2. Sistemas de protección

Los sistemas de control estructural pueden dividirse en los siguientes grupos como se muestra en la figura 2.8

Existen principalmente tres tipos de sistemas de disipación:

1. Aislamiento sísmico

El sistema de aisladores sísmicos es la técnica de análisis y diseño sísmico fundamentada en el principio de desacoplar a la estructura del suelo de fundación empleando elementos flexibles y son capaces de absorber ellos mismos una parte de la energía debida a los terremotos y de reducir, de esta manera el desplazamiento relativo entre los distintos elementos estructurales.

El empleo de estos dispositivos incrementa el periodo fundamental de la estructura, reduce las deformaciones de entrepiso y limita notablemente la energía de entrada ocasionando en consecuencia que la respuesta dinámica de la estructura también se vea reducida.

2. Elementos de disipación pasiva

Son técnicas que permiten dar un amortiguamiento suplementario mediante elementos que absorben la energía del terremoto, evitando que ésta dañe al edificio. Estos elementos llamados amortiguadores pueden ser de muy distinta forma: de aceite, de metal, visco-elásticos, viscosos. Los sistemas pasivos permiten reducir la respuesta dinámica de las estructuras a través de sistemas mecánicos especialmente diseñados para disipar energía por medio de calor. En algunos casos los amortiguadores

3. Elementos de disipación activa

tienen que ser sustituidos tras un impacto sísmico.

Estos sistemas incluyen sensores de movimiento, sistemas de control y procesamiento de datos, y actuadores dinámicos lo que hace que estos sistemas sean los más complejos. Los sistemas activos actúan contrarrestando directamente las fuerzas producida por el sismo con la aplicación de fuerzas sobre la estructura por medio de los actuadores dinámicos. Estos sistemas se encuentran activos, monitoreando la estructura en tiempo real. Una ves detectado el movimiento del suelo, aplica las fuerzas necesarias para contrarrestar en tiempo real la energía introducida por el sismo

Tipos de disipadores:

1. Disipadores metálicos

Estos dispositivos disipan energía por medio de la fluencia de metales sometidos a esfuerzos de flexión, corte, torsión, o una combinación de ellos.

Los disipadores metálicos presentan, en general, un comportamiento predecible, estable, y confiable a largo plazo.

Figura 2.9: Disipador metálico tipo ADAS.

2. Disipadores friccionales

Estos dispositivos disipan energía por medio de la fricción que se produce durante el desplazamiento relativo entre dos o más superficies en contacto. Estos disipadores son diseñados para activarse una vez que se alcanza un determinado nivel de carga en el dispositivo. Mientras la solicitación no alcance dicha carga, el mecanismo de disipación se mantiene inactivo.

Figura 2.10: Esquema disipador de energía tipo Pall.

3. Disipadores viscoelásticos

Estos mecanismos disipan energía a través de deformación dinámica de materiales viscosos. Su comportamiento depende de la velocidad con la que se genera la deformación durante los ciclos de carga.

Figura 2.11: Disipador sólido viscoelástico.

4. Disipadores viscosos

Consiste en movilizar un elemento a través de un fluido viscoso. Esto genera fuerzas que se oponen al movimiento del elemento, de magnitud proporcional a la velocidad.

Figura 2.12: Disipador de energía fluido viscoso (Taylor Devices Inc).

2.2.7. Disipador de energía fluido viscoso

Los disipadores de fluido viscoso tienen la propiedad de reducir simultáneamente los esfuerzos y las deflexiones de la estructura. Esto es debido a que los disipadores de fluido varían su fuerza solamente con la velocidad, la cual provee una respuesta que es inherentemente fuera de fase con los esfuerzos debido a la flexibilidad de la estructura. En un disipador de fluido viscoso, la fuerza de amortiguamiento se reduce a cero en este punto de máxima deformación. Esto es debido a que la velocidad del disipador es cero en este punto.

Los disipadores de fluido viscoso son esencialmente mecanismos llenos de fluido, el cual debe ser capaz de mantenerse en servicio durante grandes períodos de tiempo sin mantenimiento. Los requerimientos de los materiales son que deben ser resistentes a la corrosión, libre de esfuerzos de ruptura y alta resistencia al impacto. Esto es especialmente cierto para el cilindro del disipador, el cual debe resistir esfuerzos triaxiales. En la industria americana existen varios estándares de materiales de diversas organizaciones independientes.

2.2.7.1. Partes principales del disipador de energía viscoso

Los componentes principales del amortiguador viscoso no lineales para el uso estructural son los siguientes:

Figura 2.13: Esquema de un amortiguador viscoso (soong - Dargust, 1997)

- **Barra del Piston:** Es la pieza que se desliza en el interior del cilindro, la barra del pistón debe ser lo suficientemente resistente como para reaccionar a todas las fuerzas de amortiguamiento. Debido a que el pistón se comporta como una columna relativamente esbelta, es de acero de alta resistencia preferentemente acero inoxidable.
- **Fluido:** Los disipadores que forman parte de sistemas estructurales emplean fluidos con una serie de propiedades y requisitos de seguridad en los Estados Unidos. Los únicos fluidos que cumplen con dichas especificaciones son los provenientes de la familia de las siliconas, los cuales son resistentes al fuego (tienen un punto de inflamación mayor a 340 °C), son inertes, son completamente tóxicos y son térmicamente estables.

- Cilindro: Debe funcionar como recipiente a presión que contiene el fluido. Es usualmente fabricado a partir de un tubo de acero de una sola pieza. No es admisible soldar o ensamblar piezas para cilindros de disipadores a fin de prevenir la fatiga en el tiempo y el agrietamiento debido a los esfuerzos.
- Sello: Sello: es la pieza encargada de contener el fluido en el cilindro, en la interfaz con el pistón. El sello debe de ser durable y compatible con el fluido y el pistón.
- Acumulador: Permite el desplazamiento del volumen de la barra del pistón mientras entra o sale del disipador durante la excitación sísmica. El acumulador también compensará la expansión y contracción térmica del fluido.
- **Orificios:** Los orificios controlan el flujo presurizado del fluido a través de la cabeza del pistón. Por dinámica de fluidos, el flujo a través de un orificio simple de forma cilíndrica seguirá la ecuación de Bernoulli y la respuesta del disipador será una fuerza proporcional al cuadrado de la velocidad del pistón.
- Cabeza Del Piston: Separa las dos cámaras de presión dentro del cilindro. La cabeza del pistón desplaza el fluido a través de los orificios que están en su interior, generando de esta forma presión de amortiguamiento.

Su forma determina la ley de comportamiento del amortiguador, con diferentes formas de su orificio se puede lograr un exponente en el intervalo de 0.35 a 1.95, siendo 0.35 a 1.0 el intervalo que muestra mejor comportamiento en aplicaciones estructurales (edificaciones).

2.2.7.2. Ecuación general

La ley de comportamiento del amortiguador viscoso no lineal está dada por la ecuación:

$$f_d = c_d \cdot \operatorname{sgn}(v_d) |v_d|^{\alpha} \tag{2.3}$$

Donde:

 f_d : Fuerza del disipador.

 C_d : Constante de amortiguamiento.

sgn: Función signo.

- $\boldsymbol{v_d}$: velocidad relativa en los extremos del disipador.
- α : exponente de no linealidad, el cual se determina por las características de la cabeza del pistón.

El Coeficiente de amortiguamiento C_d : es la propiedad principal del disipador fluido viscoso, se puede considerar constante en cada uno de los dispositivos; pero su valor puede ser mayor en los niveles inferiores de la estructura porque depende del peso, y porque en los primeros pisos se tiene una mayor masa participativa. La fuerza del disipador varía sólo con la velocidad. Para una velocidad dada la fuerza será la misma en cualquier punto del dispositivo.

Figura 2.14: Modelo del amortiguador Taylor Devices Inc

2.2.7.3. Comportamiento fuerza desplazamiento

La relación de Fuerzas del disipador- Desplazamiento toma una forma similar a la de una elipse. Para dispositivos no lineales, las fuerzas de amortiguamiento se van reduciendo conforme disminuye la constante " α ".

Figura 2.15: Relación fuerza desplazamiento en dispositivos de fluidos viscoso con distintos valores de " α "

Los disipadores viscosos trabajan para resistir las acciones horizontales (fuerza sísmicas). En la figura se nota que el desplazamiento máximo corresponde a la fuerza máxima de la estructura, en ese momento la fuerza del disipador viscoso es mínima.

Figura 2.16: Disipador de energía viscoso ante una fuerza sísmica

2.2.7.4. Características de los disipadores fluido viscoso

- Desempeño bajo todas las cargas de servicio, verticales y horizontales.
 Deberá ser tan efectiva como la estructura convencional.
- Capacidad de la estructura de retornar a su estado original sin desplazamientos residuales.
- Provee un adecuado nivel de disipación de energía, de modo de controlar los desplazamientos que de otra forma pudieran dañar otros elementos estructurales.

2.2.7.5. Distribución óptima en una edificación

La incorporación de amortiguadores como sistema de protección, es capaz de disipar la energía proveniente de un sismo, esto mejora sustancialmente el desempeño estructural. Sin embargo, para lograr sistemas de disipación de energía efectivos y eficientes, se hace necesario optimizar su cantidad, capacidad y ubicación dentro de la estructura [4].

En los análisis de diseño estructural los modelos de pórtico plano son muy utilizados, donde los mismos no consideran los efectos torsionales que se producen en estructuras tridimensionales. El uso de disipadores de energía para corregir los efectos torsionales en este tipo de estructuras es más reciente. Los primeros estudios donde se con estructuras tridimensionales es el de Wu et al. (1997), en el cual se propone un procedimiento para distribuir los dispositivos viscosos de disipación de energía en estructuras tridimensionales considerando efectos flexo-torsionales a través de la minimización del valor cuadrático medio máximo de las rotaciones relativas entre pisos.

Leu y Chang (2011), propusieron una estrategia de reubicación de disipadores no lineales en la cual, partiendo de una distribución uniforme a lo largo de dos vanos elegidos como ubicación inicial, se busca la ubicación óptima, moviendo el dispositivo de la posición con menor distorsión de piso a la posición de máxima distorsión en forma iterativa.

2.2.7.6. Criterios de ubicación

Para conseguir una buena ubicación de los disipadores se debe tener en cuenta la arquitectura y el uso del edificio; todos los profesionales inmerso en este proyecto se deben trabajar en forma conjunta.

En los amortiguadores fluido viscosos, se sugiere ubicarlos inicialmente en las zonas de velocidades máximas y en los entrepisos que experimentan mayor desplazamiento relativo. (Genner y Oviedo (2009)[45]).

La ubicación óptima de los amortiguadores se logra mediante un proceso iterativo.

La norma Internacional ASCE 7-10 [1] en su capitulo 18 recomienda tomar algunas de estas consideraciones:

- Se deben emplear como mínimo dos dispositivos en la dirección a reforzar.
- La estructura no debe presentar irregularidades.
- Se deben disponer los dispositivos en todos los niveles
- Se debe buscar la simetría para no generar torsión.

2.2.8. Ecuación dinámica de movimiento

Toda estructura responde dinámicamente ante la acción de cargas o deformaciones, generando fuerzas inerciales iguales a su masa por la aceleración (segunda ley de Newton, ecuación dinámica de equilibrio)[17]. Para cargas o deformaciones aplicadas de una manera lenta, que es el caso de cargas muertas y vivas no dinámicas, las fuerzas inerciales pueden despreciarse, lo que hace posible un análisis estático de la estructura. Esta simplificación no es válida cuando la estructura se somete a cargas dinámicas o deformaciones rápidas como las causadas por viento, sismo, y vivas, dinámicas o con impacto, casos en los cuales las fuerzas inerciales no son despreciables y se hace necesario un análisis dinámico. La ecuación diferencial de equilibrio dinámico de una estructura se puede deducir por el principio de D'Alembert de la siguiente forma:

$$[M]\{\ddot{u}\} + [C]\{\dot{u}\} + [K]\{u\} = \{P\}$$
(2.4)

En donde:

[M]: Matriz de masas del sistema.

 $\{\ddot{u}\}$: Vector de aceleraciones de cada planta.

[C]: Matriz de amortiguamiento.

 $\{\dot{u}\}$: Vector de velocidades de cada planta.

[K]: Matriz de rigidez.

 $\{u\}$: Vector de desplazamientos de cada planta.

 $\{p\}$: Vector de Fuerzas aplicada a cada nivel de la estructura.

2.2.8.1. Estructuras con sistema de amortiguamiento con múltiples grados de libertad (MODOF)

Para un sistema estructural en el cual su rigidez está ligada a las columnas del sistema, las masas (losas del sistema) se las considera infinitamente rígidas, para que no actúe ningún tipo de articulación en los nodos, y el amortiguamiento de la estructura se considere viscoso; el sistema en estudio es representado por la Figura 2.17:

$$m_m \ddot{x}_m + c_{s,m} (\dot{x}_m - \dot{x}_{m-1}) - c_{s,m+1} (\dot{x}_{m+1} - \dot{x}_m) + D_m$$

- $D_{m+1} + Q_m - Q_{m+1} = -m_m \ddot{x}_g$ (2.5)

Ademas

$$D_m = P_m \cos\left(\phi\right) \tag{2.6}$$

Reemplazando en la ecuación 2.5 tenemos:

$$m_m \ddot{x}_m + c_{s,m} (\dot{x}_m - \dot{x}_{m-1}) - c_{s,m+1} (\dot{x}_{m+1} - \dot{x}_m) + P_m \cos(\phi)$$
$$- P_{m+1} \cos(\phi_{m+1}) + Q_m - Q_{m+1} = -m_m \ddot{x}_g$$
(2.7)

Figura 2.17: Modelo Estructural con Disipadores Fluido Viscosos [Cheng et al., 2008]

Donde D_m y D_{m+1} es el componente horizontal de la fuerza, y Q_m y Q_{m+1} se denota como la fuerza estructural entre los entrepisos de la edificación que considera el comportamiento no lineal.

$$m_1 \ddot{x}_m + c_{s,1} \dot{x}_1 - c_{s,2} (\dot{x}_2 - \dot{x}_1) + D_1 - D_2 + Q_1 - Q_2 = -m_1 \ddot{x}_g$$
(2.8)

La ecuación 2.8 podemos expresar en notación matricial de la forma:

$$[M]\{\ddot{x}\} + [C]\{\dot{x}\} + [D]\{1\} + [Q]\{1\} = -\ddot{x}_g[M]\{1\}$$
(2.9)

donde [M] es la matriz de masas concentradas, [C] es la matriz de amortiguamiento estructural, [K] es la matriz de rigidez lateral, [D] es la matriz de las fuerzas de los disipadores y $\{1\}$ es un vector unitario de orden n. Los términos de esta ecuación son:

En la Ecuación 2.10, {1} se designa $1 \times n$ la unidad del vector; { \ddot{x} }, { \dot{x} }, y {x} que representa el vector del desplazamiento relativo, vector de velocidad,

y vector de aceleración de la estructura con los disipadores del sistema:

$$\{\ddot{x}\}^T = \{\ddot{x}_1 \quad \ddot{x}_2 \quad \cdots \quad \ddot{x}_m \quad \cdots \quad \ddot{x}_{n-1} \quad \ddot{x}_n\}$$
 (2.10a)

$$\{\dot{x}\}^T = \{\dot{x}_1 \quad \dot{x}_2 \quad \cdots \quad \dot{x}_m \quad \cdots \quad \dot{x}_{n-1} \quad \dot{x}_n\}$$
 (2.10b)

$$\{x\}^T = \{x_1 \ x_2 \ \cdots \ x_m \ \cdots \ x_{n-1} \ x_n\}$$
 (2.10c)

La ecuación 2.9 representa a una estructura ideal simétrica con traslación en una sola dirección debido a la aceleración del suelo.Las matrices de masa, amortiguamiento y rigidez respectivamente son las que contienen la información de las propiedades de la estructura (parámetros estructurales).

2.2.9. Análisis dinámico no lineal

El análisis dinámico no lineal de sistemas predefine un numero de elementos no lineales que son asumidos que existen. Para el Análisis Dinámico No Lineal la ecuación del movimiento se sustituye por una matriz de masa diagonal [17], la cual representa la masa concentrada en nodos, cada nodo con 6 grados de libertad. Dada una matriz de amortiguamiento por un modelo de amortiguamiento proporcional de Rayleigh que depende de la matriz de masa y la matriz de rigidez multiplicados por dos coeficientes que representan un amortiguamiento viscoso y una matriz de rigidez tangente, que compensa el amortiguamiento excesivo producido por el amortiguamiento Rayleigh en los primeros modos de vibración. Para la integración de la ecuación de equilibrio dinámico se utiliza el método de Newmark de promedio (average) constante, el cual se resuelve para incrementos de desplazamiento.

2.2.9.1. Solución de la ecuación dinámica de equilibrio

Hay varios métodos diferentes que pueden usarse para la solución de la ecuación 2.4. Cada método tiene las ventajas y desventajas que dependen del tipo de la estructura [35].

2.2.9.1.1. Método de solución paso a paso

El método de solución más general para el análisis dinámico es el método incremental donde las ecuaciones de equilibrio se resuelven en los instantes de tiempo $\Delta t, 2\Delta t, 3\Delta t$, etc. Existen muchos métodos de solución incremental. En general, implican la solución de un sistema de ecuaciones de equilibrio en cada incremento de tiempo. En el caso del análisis no-lineal, puede ser necesario estimar la matriz de rigidez del sistema estructural completo en cada instante de tiempo. También, se puede requerir de varias iteraciones para satisfacer el equilibrio en cada incremento de tiempo. Como resultado de los elevados requerimientos de computación, la solución de sistemas estructurales con apenas unos cientos de grados de libertad puede tomar mucho tiempo.

2.2.9.1.2. Método de integración numérica

La aproximación más general para resolver la respuesta dinámica de sistemas estructurales es la integración numérica directa de las ecuaciones de equilibrio dinámico. Esto involucra satisfacer el equilibrio dinámico a discretos puntos en el tiempo después de que la solución ha sido definida en el tiempo cero. La mayoría de los métodos usan intervalos iguales de tiempo. Los métodos explícitos no involucran la solución de un grupo de ecuaciones lineales en cada paso. Básicamente, estos métodos utilizan la ecuación diferencial en el tiempo "t"para predecir una solución en el tiempo "t+At". En general, todos los métodos explícitos son condicionalmente estables con respecto al tamaño del paso.

2.2.9.1.3. Métodos newmark

En el año 1959 Newmark presentó una serie de métodos de integración de paso único para solucionar problemas dinámicos estructurales para cargas tanto sísmicas como de impulso. Durante los últimos 40 años el método de Newmark ha sido aplicado al análisis dinámico de muchas estructuras de la ingeniería práctica. Además, ha sido modificado y mejorado por muchos otros investigadores. Para ilustrar la aplicación de esta familia de métodos de integración numérica, considere la solución de las ecuaciones lineales de equilibrio dinámico que se escriben en la siguiente forma:

$$[M]{\ddot{u}} + [C]{\dot{u}} + [K]{u} = {F}$$
(2.11)

Durante el paso de tiempo t
 para el incremento $t+\Delta t$ se asume que la aceleración es constante

$$\ddot{u} = \frac{\ddot{u}(t) + \ddot{u}(t + \Delta t)}{2} \tag{2.12}$$

Integrando con respecto al tiempo en el pas
o $t+\Delta t$ para conseguir la velocidad y desplazamiento y reestructur
ando para usar el incremento en el desplazamiento Δu

$$\Delta \ddot{u} = \ddot{u}(t + \Delta t) - \ddot{u}(t) = \frac{4\Delta u}{\left(\Delta t\right)^2} - \frac{4\dot{u}(t)}{\Delta t} - 2\ddot{u}(t)$$
(2.13)

El incremento en la velocidad como:

$$\Delta \dot{u} = \dot{u}(t + \Delta t) - \dot{u}(t) = \frac{2\Delta u}{\Delta t} - 2\dot{u}(t)$$
(2.14)

Sustituyendo en la ecuación 2.11 de equilibrio en el paso de tiempo $t + \Delta t$.

$$[M]\{\ddot{u}(t) + \Delta\ddot{u}\} + [C]\{\dot{u} + \Delta\dot{u}\} + [K]\{u(t) + \Delta u\} = \{P(t + \Delta t)\}$$
(2.15)

Notando que el término de rigidez, puede volverse a escribir como:

$$[K(t + \Delta t)]\{u(t) + \Delta u\} = [K(t)]\{u(t)\} + [K_T]\{\Delta u\} = \{F_{ELASTIC}(t)\} + [K_T]\{\Delta u\}$$
(2.16)

donde [K(t)] representa la matriz de rigidez secante en el instante t y las fuerzas elásticas son el equivalente nodal del miembro en el instante t y la matriz [K]es la matriz de rigidez tangente actual.

Similarmente se puede volverse a escribir en la ecuación siguiente en función

del coeficiente de amortiguamiento

$$[C(t + \Delta t)]\{\dot{u}(t) + \Delta \dot{u}\} = [C(t)]\{\dot{u}(t)\} + [C_T]\{\Delta \dot{u}\} = \{F_{DAMPING}(t)\} + [C_T]\{\Delta \dot{u}\}$$
(2.17)

Sustituyendo para el incremento de aceleración y para el incremento de velocidad en términos de incrementos de desplazamiento nos lleva a la siguiente ecuación:

$$\left[\frac{4}{(\Delta t)^2}[M] + \frac{2}{\Delta t}[C_T] + [K_T]\{\Delta u\}\right] = \{P(t + \Delta t)\} + [M]\left\{\ddot{u}(t) + \frac{4}{\Delta t}\dot{u}(t) + 2[C_T]\{\dot{u}(t)\} - \{F_{DAMPING}\} - \{F_{ELASTIC}\}\right\}$$
(2.18)

Esta ecuación será resuelta sólo con incrementos de desplazamiento. Los vectores de desplazamiento, de velocidad y de aceleración pueden ser actualizados como también las fuerzas de amortiguamiento y las fuerzas elásticas al tiempo $t + \Delta t$. Después de actualizar las matrices de rigidez y de amortiguamiento la secuencia descrita es repetida para el nuevo paso de tiempo.

2.2.9.1.4. Métodos de Hilber, Hughes y Taylor

Se usa el método de Newmark para solucionar las siguientes ecuaciones modificadas de movimiento:

$$M\ddot{u}(t) + (1+\alpha)C\dot{u}(t) + (1+\alpha)Ku(t) =$$

(1+\alpha)F(t) - \alphaF(t) + \alphaC\dot{u}(t+\Deltat) + \alphaKu(t+\Deltat) (2.19)

Cuando α es equivalente a cero, el método reduce al método de aceleración constante. Esto produce disipación de energía numérica en los modos superiores sin embargo, no se puede predecir como coeficiente de amortiguamiento tal como en el uso del amortiguamiento proporcional de rigidez. Tampoco soluciona la ecuación de equilibrio fundamental en el tiempo t. Sin embargo, en la actualidad está siendo usado en muchos programas de computadora. El rendimiento del método parece muy similar al uso del amortiguamiento proporcional de rigidez.

2.2.9.1.5. Método explícito de diferencia central

Este método sólo es condicionalmente estable cuando el paso de tiempo es menos de 0.5 del período natural más corto de la estructura. Para la mayoría de las estructuras este método no es muy económico, generalmente no se recomienda para las cargas de tipo de terremoto.

La ecuación de equilibrio es:

$$[M]{\ddot{u}} + [C]{u} + K{u} = {P(t)} - P_{STATIC} - [M]{r}u_g(t)$$
(2.20)

2.2.10. Optimización

El hombre desde sus inicios se ha enfrentado constantemente a situaciones que requieren de la selección de una de varias alternativas [24], con el fin de dar solución a un problema o suplir alguna necesidad. Hasta hace poco tiempo, bastaba con que la alternativa escogida fuera útil para lo que se requería, sin embargo los recursos disponibles son limitados, entonces no basta con elegir una alternativa solo porque esta sirve, sino que se hace necesario elegir la ¿mejor? de todas las posibilidades, es decir, la requiere de menos recursos para obtener el mismo resultado.

De este modo, surge el concepto de optimización, que se refiere a la selección del mejor elemento de un conjunto de elementos posibles, de acuerdo a un criterio de selección dado. Para esto, se deben emplear métodos de optimización que permitan conocer los mejores valores que puede asumir dicho conjunto de variables (Dantzig, 2010).

El área de la optimización es muy extensa y ha recibido mucho interés en los años recientes, primeramente por el rápido progreso en las tecnologías de las computadoras, incluyendo el desarrollo y la disponibilidad de software de fácil manejo. La necesidad de resolver problemas de optimización se presenta frecuentemente en cualquier actividad técnica o científica. El creciente y constante desarrollo tecnológico ha producido considerablemente un aumento en el número y complejidad de este tipo de problemas, lo que ha motivado el estudio de teorías matemáticas que nos conduzcan a una buena solución.

2.2.10.1. Método tradicional de diseño

El diseño tradicional esta fundamentalmente regido por la experiencia del diseñador, a partir de los principios de la resistencia de materiales y disciplinas afines, de modelos de comportamiento de los materiales y de las prescripciones de las normativas vigentes. Normalmente es necesario realizar varios ajustes y correcciones sobre el proyecto inicial hasta obtener un diseño suficientemente seguro y, por tanto, apto para su ejecución.

Figura 2.18: Esquema Para el Método Tradicional de Diseño

2.2.10.2. Método de diseño óptimo

El diseño con optimización se realiza mediante una herramienta o una técnica de optimización el cual realiza procesos iterativos para producir de manera efectiva soluciones de alta calidad. Puede manipular una sola solución en cada iteración o todo un conjunto de ellas, se puede observar en la figura 2.19

2.2.11. Técnicas de diseño óptimo en ingeniería

para resolver un problema de optimización pueden clasificarse en dos grandes grupos.

Figura 2.20: Esquema de métodos de resolución de problemas de optimización

2.2.11.1. Métodos exactos

Son métodos que proporcionan la solución óptima del problema. A este grupo pertenecen estrategias como la programación matemática lineal y no lineal (linear and nonlinear programming) o los métodos basados en los criterios de optimalidad (optimality criteria). Una descripción de los mismos y aplicaciones a la ingeniería estructural pueden encontrarse en Moragues (1980), Fletcher (2001) y Hernández y Fontan (2002).

2.2.11.2. Optimización heurística

La heurística es la capacidad de resolver un problema, sin que haya una prueba matemática del desempeño de la solución. La heurística es el arte y la ciencia del descubrimiento y la invención y permite resolver problemas mediante la creatividad y el pensamiento divergente (Pólya, 1945).

Para abordar un problema desde la heurística, Pólya (1945) reconoce cuatro aspectos que deben tenerse en cuenta y que describen claramente lo que es un método heurístico:

- Primero: Entender el problema. ¿Cuál es la incógnita? ¿Cuáles son los Datos? ¿Cuáles son las condiciones y restricciones?
- Segundo: Elaborar un plan. Encuentre la conexión entre los datos y la incógnita. Si no tiene suficiente conocimiento sobre la relación, considere problemas auxiliares, experiencias anteriores y trabajos relacionados o familiares al problema. Si no conoce la solución puede asumir una y realizar deducciones de la misma (razonamiento a la inversa).
- Tercero: Lleve a cabo el plan: Compruebe cada paso. ¿Es posible establecer que el procedimiento es correcto? ¿Se puede comprobar el resultado?
- Cuarto: Examinar la solución obtenida. ¿Se puede derivar la solución de otra manera? ¿Se pueden usar los resultados en la resolución de otro problema?

2.2.11.3. Optimización metaheurística

El término metaheurístico fue introducido por Fred Glover en 1986: Son algoritmos aproximados de propósito general consistentes en procedimientos iterativos que guían una heurística subordinada combinando de forma inteligente distintos conceptos para explorar y explotar adecuadamente el espacio de búsqueda.

La mayoría de metaheurísticos de optimización parten de una o más soluciones elegidas aleatoriamente que se van mejorando progresivamente. Si se parte de una única solución aleatoria y las nuevas soluciones propuestas por el heurístico dependen de ella, se corre el riesgo de quedarse estancado en un óptimo local. Por ese motivo tales métodos suelen denominarse métodos locales, en contraposición a los métodos globales, que suelen generar varias soluciones aleatorias independientes y por tanto pueden explorar diferentes áreas del espacio de soluciones; así evitan, en la medida de lo posible, limitarse a un óptimo local determinado.

Ventajas:

- Algoritmos de propósito general
- Gran éxito en la práctica
- Fácilmente implementables
- Fácilmente paralelizables

Desventajas:

- Son algoritmos aproximados, no exactos
- Son altamente no determinísticos (probabilísticos)
- Presentan poca base teórica

2.2.11.3.1. Clasificación de las metaheurísticas

Existen distintas metaheurísticas, solo se describen las características esenciales de aquellas que resultan mas representativas.

Metaheurísticas basadas en trayectorias

Templado simulado

El Templado o Enfriamiento Simulado (Simulated Annealing, SA), es conocida como la primera de las metaheurísticas y uno de los primeros algoritmos con una estrategia explícita para escapar de óptimos locales.

El SA se inspiró en el proceso de recocido en la metalurgia, el cual implica el calentamiento y el enfriamiento controlado de un material, de ahí el uso del término temperatura. Es el exponente mas importante del tipo de metaheurísticas donde la probabilidad de aceptación es una función exponencial del empeoramiento producido. Un modo de evitar que la búsqueda local finalice en óptimos locales, hecho que suele ocurrir con los algoritmos tradicionales de búsqueda local, es permitir que algunos movimientos se produzcan hacia soluciones peores. Pero si la búsqueda esta avanzando realmente hacia una buena solución, estos movimientos de escape de óptimos locales deben realizarse de un modo controlado.

Búsqueda voraz adaptable aleatoria (GRASP)

La Metaheurísticas llamada Procedimiento de Búsqueda Voraz Adaptable Aleatoria (Greedy Randomized Adaptive Search Procedures, GRASP), es un método multiarranque, en el cual cada iteración consiste en la construcción de una solución factible aleatoria, y con criterios adaptables para la elección de los elementos a incluir en la solución, seguida de una búsqueda local usando la solución construida como el punto inicial de la búsqueda. Este procedimiento se repite varias veces y la mejor solución encontrada sobre todas las iteraciones se devuelve como resultado.

Búsqueda tabú (BT)

Cuando la búsqueda se queda atrapada en un óptimo local, la búsqueda tabú (BT) selecciona el siguiente movimiento de búsqueda (posiblemente inferior) de una manera que prohíbe temporalmente,volver a examinar las soluciones anteriores. El instrumento principal para alcanzar este resultado es la lista tabú que "recuerda" los movimientos de la búsqueda anterior y los deshabilita durante un periodo de tenencia especificada. Cuando un movimiento tabú completa su tenencia, se elimina de la lista tabú y se hace disponible para futuros movimientos.

Búsqueda por entornos variables (VNS)

La Búsqueda por Entornos Variables, (Variable Neighborhood Variable), es una metaheurísticas que esta basada en un principio simple: cambiar sistemáticamente de estructura de entornos dentro de la búsqueda para escapar de los mínimos locales. El VNS básico obtiene una solución del entorno de la solución actual, ejecuta una búsqueda monótona local desde ella hasta alcanzar un ´ optimo local, que reemplaza a la solución actual si ha ocurrido una mejora y modifica la estructura de entorno en caso contrario.

Búsqueda local iterativa (ILS)

La Búsqueda Local Iterativa (Iterative Local Search) es método que propone un esquema en el que se incluye una heurística base para mejorar los resultados de la repetición de dicha heurística. Esta idea ha sido propuesta en la literatura con distintos denominaciones, como descenso iterado, grandes pasos con cadenas de Markov, Lin-Kerningan iterado, búsqueda perturbada o ruidosa o la búsqueda de entorno variable con agitación donde la solución aportada por una heurística de búsqueda por entornos es agitada para producir una solucion de partida para la heurística de búsqueda.

Búsqueda local guiada (GLS)

La Búsqueda Local Guiada (Guided Local Search) consiste básicamente en una secuencia de procedimientos de búsqueda local; al analizar cada uno de ellos se modifica la funcion objetivo penalizando determinados elementos que aparecen en el optimo local obtenido en el último paso, estimulando de esta forma la diversificación de la búsqueda. GLS, desarrollada por Voudoris surge como una extensión de GENET, una red neuronal para la satisfacción de restricciones. Mientras GENET intenta encontrar cualquier solución que satisfaga a todas las restricciones, GLS intenta encontrar soluciones optimas acorde a una función dada.

Metaheurísticas basadas en poblaciones

los algoritmos basadas en poblaciones son las que conducen la evolución en el espacio de búsqueda de conjuntos de soluciones, llamados poblaciones con la intención de acercarse a la solución optima con sus elementos.

Algoritmos genéticos (AG)

Son modelos computacionales inspirados en los mecanismos de herencia y evolución natural. la primera publicación sobre una aplicación del mismo, se deben a una disertación de (Bagley en 1967), que disenó algoritmos genéticos para buscar conjuntos de parámetros en funciones de evaluación de juegos, y los comparo con los algoritmos de correlación, procedimientos de aprendizaje modelizados después de los algoritmos de pesos variantes de ese periodo. Pero es otro científico al que se considera creador de los Algoritmos Genéticos, John Holland, [38] que los desarrollo, junto a sus alumnos y colegas, durante las décadas de 1960 y 1970.

Algoritmos meméticos

Es una metaheurísticas derivada de los algoritmos genéticos fueron desarrollados por (Moscato en 1989), y que surgen de combinar los algoritmos genéticos con búsquedas locales. Por esto último se considera un algoritmo hibrido, aunque en esta memoria se ha puesto dentro de las metaheurísticas basadas en poblaciones.

Algoritmos de estimación de distribuciones (EDA)

son algoritmos evolutivos que usan una colección de soluciones candidatas para realizar trayectorias de búsqueda evitando mínimos locales. Fueron introducidos en la computación evolutiva por (Mühlenbein y Paaß) en 1996. Estos algoritmos no requieren de operadores de cruce, ni de mutación; y en lugar de manipular directamente a los individuos que representan soluciones del problema usan la estimación y simulación de la distribución de probabilidad conjunta como un mecanismo de evolución, la cual es estimada a partir de una base de datos conteniendo los individuos seleccionados en la generación anterior.

Búsqueda dispersa (SS)

La Búsqueda Dispersa (Scatter Search) se basa en el principio de que la información sobre la calidad o el atractivo de un conjunto de reglas, restricciones o soluciones pueden ser utilizados mediante la combinación de estas en lugar de usarlas aisladamente. Contempla el uso de un conjunto de soluciones, denominado conjunto de referencia, de buenas soluciones dispersas que sirve, tanto para conducir la búsqueda mejorando las herramientas para combinarlas adecuadamente para crear nuevas soluciones que mejoren las anteriores, como para mantener un grado satisfactorio de diversidad.

Colonia de hormigas (ACO)

Este algoritmo emplea estrategias inspiradas en el comportamiento de las colonias de hormigas para descubrir fuentes de alimentación, al establecer el camino mas corto entre estas y el hormiguero y transmitir esta información al resto de sus compañeras. Cada hormiga construye una solución, o un componente de esta, comenzando en un estado inicial seleccionado de acuerdo a criterios dependientes del problema. Mientras construye su propia solucion colecciona información sobre las características del problema y sobre su actuación y usa esta información para modificar la representación del problema. Las decisiones acerca de cuando las hormigas deberían liberar feromona sobre el ambiente y cuanta feromona debería depositarse dependen de las características del problema y del diseño de la implementación. Las hormigas pueden liberar feromona mientras construyen la solución, o después de que la solución ha sido construida o ambos.

Optimización con enjambre de partículas (PSO)

Optimización con enjambre de partículas es una metaheurísticas evolutiva

inspirada en el comportamiento social de las bandadas de pajaros o bancos de peces desarrollada por Eberhart y Kennedy en 1995. Comparte similaridades con técnicas de la computación evolutiva, como los Algoritmos Genéticos. Aquí el sistema es inicializado con una población de soluciones aleatorias y hace búsquedas del óptimo actualizando las generaciones. Sin embargo no tiene operadores de cruce ni mutación. En PSO las soluciones, llamadas partículas, se "echan a volar" en el espacio de búsqueda guiadas por la partícula que mejor solución ha encontrado hasta el momento y que hace de líder de la bandada. Cada partícula evoluciona teniendo en cuenta la mejor solución encontrada en su recorrido y al líder. El procedimiento tambien tiene en cuenta el mejor valor alcanzado por alguna de las partículas en su entorno. En cada iteración, las partículas modifican su velocidad hacia la mejor solución de su entorno teniendo en cuenta la información del líder.

2.2.11.3.2. Clasificación de algoritmos metaheurísticas

Figura 2.21: Taxonomía jerárquica de algoritmos metaheurísticos

En esta tesis nos centraremos unicamente en la aplicación de los Algoritmos Genéticos (AG), a continuación se explicará con más en detalle.

2.2.12. Algoritmos genéticos (AG)

Los algoritmos genéticos son técnicas de programación que intentan replicar el comportamiento biológico, es decir, son algoritmos de búsqueda basados en la mecánica de la selección natural y de la genética. Estos algoritmos utilizan la información histórica para encontrar nuevas rutas de búsqueda de una solución óptima del problema a resolver.

Los algoritmos genéticos (denominados originalmente planes reproductivos genéticos) fueron desarrollados por John H. Holland a principios de los 1960s, motivado por resolver problemas de aprendizaje de máquina.

2.2.12.1. Características de algoritmos genéticos (AG)

- Son algoritmos estocásticos, es decir, es un algoritmo que trata los procesos cuya evolución es aleatoria y que basa su resultado en probabilidades que cambian con el tiempo.
- Son algoritmos de búsqueda múltiple, por lo que existen varias soluciones posibles.
- Son técnicas que hacen un gran recorrido en el subespacio de posibles soluciones válidas; son considerados los algoritmos de optimización estocásticos más exploratorios. La convergencia del algoritmo es poco sensible a la población inicial si esta se escoge de forma aleatoria y sea una población lo suficientemente grande.
- El algoritmo genético realiza una búsqueda paramétrica robusta, lo que significa que los parámetros del algoritmo escogidos deben ser muy malos como para evitar la convergencia.
2.2.12.2. Representación de las variables

Para poder trabajar con los algoritmos genéticos es necesario representar el conjunto en un cromosoma, el cual contiene varios genes, los cuales corresponden a los parámetros del problema. Existen tres formas principales de representación de variables:

- En cadenas binarias, donde la posición de los ceros y unos representa el valor de algún aspecto de la solución.
- En cadenas de enteros o números, que al igual que en las cadenas binarias la posición representa alguna característica particular. Este método tiene mayor precisión y por lo tanto también complejidad que el sistema binario.
- En cadenas de letras, donde cada letra representa algún aspecto de la solución.

podemos representar un cromosoma en una c_i^t generación (iteración) determinada t como:

$$c_i^t = (b_{il}^t \dots b_{ilong}^t) \tag{2.21}$$

con $b_{ij}^t \in [0, 1, j = 1....long$. El término *individuo* es frecuentemente utilizado [Goldberg, 1989a] para referirse al conjunto de información genotipofenotipo-adecuación. Así, podemos representar un individuo X_i^t en una generación t, como la terna:

$$X_{i}^{t} = (c_{i}^{t}, x_{i}^{t}, f_{i}^{t})$$
(2.22)

donde X_i^t es la decodificación (fenotipo) del cromosoma c_i^t , y f_i^t es la adecuación de la solución al entorno o *fitness*.

2.2.12.3. Función de evaluación

Aunque existen otras alternativas, el mecanismo usual de medir la adecuación de una solución consiste simplemente en evaluar su fenotipo a través de la función objetivo f del problema que se esté resolviendo. Así pues, la función de evaluación *eval* se corresponde normalmente con la función objetivo fdel problema, y entonces, dado un cromosoma c_i^t y su fenotipo x_i^t , podemos obtener su adecuación f_i^t como:

$$f_i^t = eval(c_i^t) = f_i^t \tag{2.23}$$

La función objetivo juega un papel fundamental en un AE, puesto que ésta es la información fundamental que se usa del entorno, lo cual hace que estos métodos sean muy generales y robustos.

El algoritmo genético únicamente maximiza, pero la minimización puede realizarse fácilmente utilizando el recíproco de la función maximizante (debe cuidarse, por supuesto, que el recíproco de la función no genere una división por cero). Una característica que debe tener esta función es, que debe ser capaz de "castigar" a las soluciones malas, y de "premiar" a las buenas, de forma que éstas últimas sean las que se propaguen con mayor rapidez.

2.2.12.4. Proceso de los algoritmos genéticos (AG).

Para la búsqueda de soluciones del problema, el algoritmo genético sigue una serie de pasos. Goldberg, Sastry y Kendall (2005) los describieron de la siguiente manera:

- Inicialización: la población inicial de candidatos es generada aleatoriamente en el espacio de búsqueda.
- Evaluación: una vez iniciada la población o una población descendiente, los valores de aptitud de las soluciones candidatas son evaluadas.
- Selección: la idea general de este paso es la preferencia de las mejores soluciones de las peores, haciendo uso de procedimientos de selección, como la selección por ruleta, selección elitista, selección escalada, selección por torneo, por mencionar algunos.

- Recombinación: el procedimiento combina partes de dos o más soluciones aparentes para crear nuevas soluciones, posiblemente mejores.
- Mutación: mientras la recombinación opera con 2 o más cromosomas parentales, la mutación localmente, pero aleatoriamente altera una solución. Aunque el operador mutación asegura que ningún punto del espacio de búsqueda tenga probabilidad cero de ser examinado, lo cual es de capital importancia para asegurar la convergencia de los AG.
- Reemplazo: la población descendiente creada por la selección, recombinación y mutación reemplaza a la población originalmente creada. Existen varias técnicas de reemplazo en los algoritmos genéticos como el reemplazo elitista, por estado estacionario o proporcional a la aptitud.
- Se repiten los pasos del 2 al 6, hasta encontrar la condición final deseada.

Para la ejecución de un algoritmo genético es necesario fijar algunos parámetros:

- Tamaño de la población: el cual debe ser lo suficientemente grande para garantizar la diversidad de soluciones.
- Condición de terminación: esta condición comúnmente hace referencia a la convergencia del algoritmo genético o a un determinado número de generaciones.

El procedimiento generalizado de un algoritmo genético se representa en la Figura 2.22

Figura 2.22: Diagrama de flujo de un algoritmo genético básico

Durante la ejecución del algoritmo, los padres deben ser seleccionados para la reproducción, a continuación dichos padres seleccionados se cruzarán generando dos hijos, sobre cada uno de los cuales actuará un operador de mutación. El resultado de la combinación de las anteriores funciones será un conjunto de individuos (posibles soluciones al problema), los cuales en la evolución del Algoritmo Genético formarán parte de la siguiente población.

2.2.12.5. Operadores genéticos.

2.2.12.5.1. Selección: Es la componente que guía el algoritmo para encontrar la solución, prefiriendo dentro de un grupo de baja *función de aptitud* a los más altos. Puede ocuparse una operación determinista; en la mayoría de las implementaciones tiene componentes aleatorios. La probabilidad de escoger

el individuo adecuado es directamente proporcional a su función de aptitud. Se puede observar cómo un experimento aleatorio.

$$P[b_{j,t} \ es \ seleccionada] = \frac{f(b_{j,t})}{\sum f(b_{j,t})}$$
(2.24)

sólo funciona para los valores positivos de las funciones de aptitudes. Si éste no es el caso, debe aplicarse una transformación de no-decremento $\varphi : \Re \to \Re^+$ (un cambio en el caso más simple). Entonces la probabilidad puede ser expresada por

$$P[b_{j,t} \ es \ seleccionada] = \frac{\varphi(f(b_{j,t}))}{\sum \varphi(f(b_{j,t}))}$$
(2.25)

las diferentes salidas se obtendrán con diferentes probabilidades. La programación del algoritmo se puede proponer como sigue, y la configuración analógica se representa con la expresión matemática anterior.

Figura 2.23: Representación del porcentaje de selección (tipo Ruleta)

2.2.12.5.2. Crossover: Este operador es el encargado de intercambiar el material genético entre los cromosomas, para crear uno nuevo, supuestamente mejor. El ¿crossover? (en inglés) es el principal operador genético, ya que el algoritmo genético se basa en el cruce de cromosomas, es decir, en el ¿crossover?, y sin embargo, un algoritmo genético si pudiera prevalecer sin otro operador genético como lo es la mutación.

Existen varias formas de realizarse el ¿crossover?:

Crossover uniforme: se crea un patrón aleatorio de unos y ceros, y se intercambian los bits de los cromosomas donde haya una coincidencia con un 1 en el patrón. O bien se genera un número aleatorio para cada bit, y si supera una determinada probabilidad se intercambia ese bit entre los dos cromosomas. En la Figura 2.24 se tiene a los mismos padres del ejemplo anterior, pero con la presencia de un patrón. Se toma como base al cromosoma padre, pero en las posiciones donde el patrón contenga un 1, el bit del hijo en esa posición se toma de la madre.

 Crossover N-puntos: en lugar de un único punto, se eligen al azar N puntos de ruptura. Cada segunda sección se intercambia. Entre estas clases, la de dos-puntos es particularmente importante.

pad	re								1.77		V	13	
0	0	0	1	0	1	0	1	0	1	0	1	0	1
ma	dre												
1	0	1	1	1	0	0	1	1	1	0	1	1	1
hijo													
0	0	0	1	0	0	0	1	1	1	0	1	1	1

Figura 2.25: Crossover N-puntos (Orozco & Orozco, 2007)

- Crossover segmentado: esta técnica es muy parecida al cruzamiento de N-puntos, con la diferencia de que el número de puntos de ruptura puede variar.
- Crossover aleatorio: primero se escoge una permutación aleatoria que se aplicará a los progenitores, después el cruzamiento de N-puntos se aplica a los progenitores aleatorios y, finalmente, los descendientes aleatorios se transforman de nuevo con permutación inversa.

2.2.12.5.3. Mutación: El último ingrediente de los AG es la mutación, es decir, la deformación aleatoria de la información genética en un individuo, como las radiaciones radioactivas u otros medios de influencia. En la reproducción real, la probabilidad de que un determinado gen sea mutado es casi igual para todos los genes. Así, está al alcance de la mano usar las siguientes técnicas de mutación para una determinada cadena binarias, donde p_M es la probabilidad de que un sólo gen sea modificado:

		Gen mutado								
Descendiente	1	0	1	0	0	1	0	1	1	0
Descendiente mutado	1	0	1	0	1	1	0	1	1	0

Figura 2.26: Operador mutación

- Inversión de un solo bit: la probabilidad de mutación p_M de que un bite elegido al azar sea negado.
- Inversión por fragmentos: toda la cadena es invertida bit a bit con una probabilidad de mutación p_M .
- Selección aleatoria: la probabilidad de mutación p_M de que una cadena elegida al azar sea reemplazada.

2.2.13. Programación en Fortran con (API) ETABS 2016

ETABS (Extended Three Dimensional Analysis of Building System) es un programa desarrollado por la empresa CSI, Computer & Structures, Inc. En Berkeley, California, EEUU. Puede manejar los más grandes y complejos modelos impulsados por un motor de análisis incomparable e instrumentos de diseño. Puede realizar diversos Análisis Estáticos y Dinámicos de forma lineal y No Lineal a través de funciones espectrales y Tiempo-Historia [14]. Pueden incorporarse resortes, amortiguadores, aisladores, Disipadores, secciones no prismáticas, etc.

ETABS se ha desarrollado en un ambiente constructivo totalmente integrado del análisis y del diseño, tiene muchísimas opciones extras que simplifican el diseño de edificaciones, como por ejemplo: Cálculo automático de coordenadas de centros de masa (x_m, y_m) , cálculo automático de coordenadas de centros de rigideces (x_t, y_t) , cálculo automático de fuerzas sísmicas, sus excentricidades y aplicación en el centro de masas, cálculo automático de masas del edificio a partir de los casos de carga elegidos, división automática de elementos (Auto-Mesh), así se pueden definir elementos que se cruzan, y el programa los divide automáticamente en su análisis interno, o se puede dar el comando de que divida los elementos en el mismo modelo, plantillas predefinidas de sistemas de losas planas, losas en una dirección, losas reticulares o con nervaduras y casetones, cubiertas.

Cuenta con una interfaz de programación para aplicaciones (API) que es una herramienta poderosa que les permite a los usuarios automatizar muchos de los procesos, realizar análisis y obtener resultados personalizados.

Se puede utilizar desde cualquier lenguaje de programación, desde donde se puede acceder, entre estos lenguajes de programación se tiene: Matlab, Visual Basic para Aplicaciones (VBA), F#, Visual Basic .net, Visual C++, Visual C#, Java, Intel Visual Fortran, Python.

Lenguaje de programación Fortran

FORTRAN es el lenguaje de alto nivel más antiguo, fue desarrollado por IBM a fines de los años 50, bautizado en un comienzo como IBM FORMULA TRANSLATION SYSTEM (IBMFORTRANS) que luego se comprimió simplemente a FORTRAN [41].

Es un lenguaje muy utilizado en aplicaciones científicas y matemáticas que requieren de un alto grado de precisión, por ello está especialmente adaptado para el cálculo numérico y es utilizado en áreas donde los cálculos están dominados por cómputos intensivos como la predicción numérica del tiempo, análisis de elementos finitos, dinámica de fluidos computacionales, física computacional, entre otros.

Además es el lenguaje más utilizado en el área de la computación de alto rendimiento, de hecho los programas usados para la evaluación de ranking y desempeño (Benchmark) de los supercomputadores más rápidos del mundo por lo general son escritos en este lenguaje.

En la presente Tesis se hará el uso de lenguaje de programación Visual Fortran, las subrutinas están escritas utilizando el entorno de desarrollo integrado Microsoft Visual Studio 2015 y bajo la sintaxis de fortran 95.

2.2.14. Algoritmo genético propuesto para el diseño de una edificación con amortiguadores

Se plantea la adaptación de los AG para la distribución optima de amortiguadores no lineales, que a su vez, serán comparados con un modelo inicial de la estructura que se desee analizar, determinando en un inicio sus propiedades, características de la edificación, lo cual nos permitirán observar la convergencia del Algoritmo genético.

2.2.14.1. Construcción de la función objetivo

Antes de emprender cualquier estudio de optimización, es importante definir los límites del sistema que se investiga. Para diseñar por sismo es necesario revisar el comportamiento del edificio en las dos direcciones ortogonales al plano (X y Y), aquí se realizó el análisis en ambas direcciones. Para ello se propuso 2 criterios de optimización, el primero ligado al deriva de entrepiso según el Reglamento Nacional de Edificación (E-030), y el segundo a la variación de la disipación de energía en la estructura.

$$\begin{array}{l}
 DDE_{i} = \frac{Drift_{i}}{D_{obj}} \times \frac{100}{n^{\circ}pisos} & ; \quad Drift_{i} \leq D_{obj} \\
 DDE_{i} = \frac{1,5D_{obj} - Drift_{i}}{0,5D_{obj}} \times \frac{90}{n^{\circ}pisos} & ; \quad 1,5D_{obj} \geq Drift_{i} > D_{obj} \\
 DDE_{i} = 0 & ; \quad Drift_{i} > 1,5D_{obj} \\
 DDE = \sum_{i=1}^{n^{\circ}pisos} DDE_{i} \\
\end{array}$$

$$(2.26)$$

Donde Drift_i es la deriva del entrepiso *i* de la edificación, DDE_i es la deriva de entrepiso Local *i*, DDE es la suma global de todos los derivas de la edificación, D_{obj} es la deriva objetivo. En el criterio de optimización que se plantea no se tratará de reducir DDE_i al mínimo, se ajustara cercano al límite establecido por los reglamentos, como E.30 Norma Peruana o para análisis por desempeño con la Norma Americana, para este ultimo reglamento en mención la deriva máxima es de 0,0043. Si la deriva va decreciendo se aleja del límite como también su calificación, la asignación de su calificación es de 8,3333 cuando se encuentra en el límite 0.0043, y una calificación de 0 cuando las derivas son mayores o igual a 0.0064. Para dispensar a los individuos que presentan derivas dentro de los límites del reglamento, al individuo se castiga multiplicando por un factor de 7,5, sus calificaciones de los resultados de derivas mayores de limite del reglamento y para derivas mayores de 0,0043 se aplica el mismo criterio explicado.

Otro criterio tomado fue la variación de la disipación de energía (VDE) en la estructura, que varia entre 0.7 y 1.0. El VDE funciona como un factor de castigo cuando se carece de regularidad de disipación de energía en la altura del edificio, se emplea la siguiente ecuación:

$$\begin{aligned}
\text{VDE}_{i} &= D_{\text{rel}_{i}} \times F_{D_{i}} \\
L &= \frac{\sum_{i=1}^{n^{\circ} \text{pisos}} \text{VDE}_{i}}{n^{\circ} \text{pisos}} \\
E_{i} &= 0,7 + \left(0,25 - \left|1 - \frac{\text{VDE}_{i}}{L}\right|\right) \times \frac{0,3}{0,25} \quad \text{Si} \\
0,75 \times L &\leq \text{VDE}_{i} \leq 1,25 \times L \\
E_{i} &= 0,7 \quad \text{de otra forma} \\
\text{VDE} &= \frac{\sum_{i=1}^{n^{\circ} \text{pisos}} E_{i}}{n^{\circ} \text{pisos}}
\end{aligned}$$

$$(2.27)$$

Donde VDE_i es el variación de la disipación de energía local del entrepiso i, D_{rel_i} es el desplazamiento relativo máximo de los extremos del amortiguador i, L es el promedio de los índices de energía local de entrepiso, E_i es la calificación del entrepiso i (varía entre 0.7 y 1), e VDE variación de la disipación de energía

2.2.14.2. Variables de diseño

Se pueden definir las variables de diseño como los parámetros que controlan las derivas de la estructura a optimizar, una variables de diseño seria los coeficientes de amortiguamiento C_d , variacion de energía. Ver la ecuación 2.27 Y 2.26

2.2.14.3. Función objetivo

Una vez formulado y delimitado el problema de interés, en el siguiente paso se elegi los criterios dados con el que se evalúa el diseño, de forma que podamos identificar cual es el mejor diseño según los variables intervinientes que previamente se ha explicado. El producto de estos variables de diseño es la funcion objetivo.

$$Maximizar \quad \left(\sum_{i=1}^{n^{\circ} \text{pisos}} \text{CDE}_i \times \frac{\sum_{i=1}^{n^{\circ} \text{pisos}} \text{E}_i}{n^{\circ} \text{pisos}}\right)$$
(2.28)

2.2.14.4. Restricciones

Son conocidos a los límites, que toman los valores de las variables de diseño. Por lo tanto, las restricciones son condiciones que debe de cumplir el diseño para que pueda ser considerado como válido, planteándose en función de las variables, a las que se les exige tener un valor o mantenerse dentro de unos límites. Ver la ecuación 2.27 y 2.26.

Las principales características del algoritmo genético propuesto para resolver el problema son las siguientes:

- Se Codifica los cromosomas (binario).
- Se realiza la modelación estructural en el programa ETABS 2016 para cada individuo.
- Se utiliza el criterio AG simple con preferencia en los objetivos.
- Los mejores individuos se guardan en archivos con formato (.txt) para su posterior análisis en el ETABS.
- La implementación esta escrito en el lenguaje Fortran 95.

A continuación se muestra el diagrama de flujo en la siguiente figura 2.27

Figura 2.27: Diagrama de Flujo General Algoritmo Genético Propuesto

2.3. Hipótesis

 Si en una edificación aporticada se utiliza una Distribución óptima de Amortiguadores Viscosos no Lineales mediante algoritmos genéticos, entonces se obtiene buen nivel de desempeño estructural frente a sismos intensos.

Hipótesis especificas

- Si en una edificación aporticada utiliza las variables más importantes para la distribución óptima de amortiguadores viscosos no lineales entonces se obtiene un diseño sismoresistente eficiente mediante algoritmos genéticos.
- Si en una edificación aporticada se utiliza una distribución óptima de amortiguadores viscosos no lineales mediante algoritmos genéticos entonces la medida de las derivas de entrepisos frente a sismos intensos se encuentra en el límite según RNE-E.030.
- Si en una edificación aporticada se aplica los criterios de diseño que se deben emplear para la distribución óptima de amortiguadores viscosos no lineales entonces se alcanza un buen resultado en el nivel de daño frente a sismos intensos.
- Si en una edificación aporticada se utiliza una distribución óptima de amortiguadores viscosos no lineales mediante algoritmos genéticos entonces se minimiza los costos, se tiene reducción en los desplazamientos, y un buen desempeño.

2.4. Variables de estudio

El presente trabajo de tesis se considera dentro de las variables:

2.4.1. Variable independiente

• Técnica de algoritmos genéticos (AG).

2.4.2. Variable dependiente

Distribución óptima de amortiguadores viscosos no lineales

2.5. Alcances y limitaciones

2.5.1. Alcances

• La version DeViDaAGS v1.0 (Design Viscous Dampers Genetic Algorithms) es un aplicativo desarrollado bajo sintaxis de lenguaje de programación de Visual FORTRAN [2.2.13] integrando con la interfaz de programación de aplicaciones (API) ETABS 2016, empleando un método metaheurístico con la técnica de Algoritmos Genéticos (AGs) [2.2.12], usada para la distribución optima de amortiguadores viscosos no lineales en una edificación frente a acciones sísmicas con el objetivo de mejorar una buena respuesta estructural durante su vida util como las exigencias de la norma peruana E.30 de diseño de sismorresistente o la norma americana quien especifica limites de desplazamientos en función de niveles de daño esto para mejorar el desempeño estructural, servirá de base para realizar investigaciones de estructuras existentes o nuevas que son vulnerables.

		21-	
Res Projection A	66 de la Edificación Trose U	Data de Alyonha Gener Nadalded de la Nadalded de la Nadalded de la Na de Induntar I Na de Induntar I Strais de Generaciones Denna Orgeho Hestald Denna Linter 0	x x x x x x x x x x x x x x

Figura 2.28: Aplicación propia DeViDaAgs v1.0.1

2.5.2. Limitaciones

- En la ciudad de Huancavelica no se cuenta con registros sísmicos reales, por lo que para la presente tesis se realizo con acelerogramas que se encuentran en departamentos cercanos al limite de la provincia, normalizadas de acuerdo a la norma E-030 del Perú completando con el registro sísmico faltante llamado también sismo artificial sintético mediante una simulación con el programa Sismo Art 2016, como indica nuestra norma.
- las diferentes técnicas de optimización de estructuras no son implementados en software comerciales porque estas requieren altos grados de análisis computacional y sea ha visto en los últimos 50 años.
- No contamos con un laboratorio especializado en ingeniería avanzada en sismorresistente para investigaciones de alto grado de importancia.
- Puede tomar mas tiempo en la ejecución de análisis para obtener los resutados, la cantidad de generaciones varia según el numero de individuos.
- El tiempo que requiere para el diseño de la aplicación DeViDaAGS 1.0 (Design Viscous Dampers Genetic Algorithms) es equivalente a gastos económicos en función al tiempo de un diseñador.

Capítulo III: Metodología de la investigación

3.1. Ámbito de estudio

El ámbito de estudio para el presente Investigación corresponde a la zona céntrica de la ciudad de Huancavelica.

- Departamento : Huancavelica
- Provincia : Huancavelica
- Distrito : Huancavelica

Figura 3.1: Ubicación de la edificación propuesta para el estudio

3.2. Tipo de investigación

La presente investigación ha sido catalogada según su propósito, como tecnológica ya que trataremos de solucionar un problema practico de la realidad diseñando una herramienta computacional valiéndonos del conocimiento científico.

INVESTIGACIÓN TECNOLÓGICA = INVESTIGAR + TRANSFORMAR

3.3. Nivel de investigación

El nivel de investigación en el presente de trabajo es explicativo. Porque su interés se centra en explicar el porqué de los hechos mediante el establecimiento de relaciones causa-efecto. En este sentido, los estudios explicativos pueden ocuparse tanto de la determinación de las causas (investigación postfacto), como de los efectos (investigación experimental), mediante la prueba de hipótesis.

3.4. Método de investigación

En la presente investigación se utilizará el método científico como método general Y como método específico el analítico - deductivo, se establecerá la relación de causa y efecto que existen entre las variables en estudio, se investigará la significancia entre las variables, es decir, la Técnica de Algoritmos Genéticos (AGs). Y la variable dependiente que es, la distribución optima de amortiguadores no lineales y a través del método científico específico, se hará un análisis de la respuesta estructural optima ante una excitación sísmica con uso de amortiguadores para lograr un desempeño estructural más estable y también esto para medir la efectividad y la eficacia del resultado.

3.5. Diseño de investigación

En la presente investigación se utilizará el diseño experimental. Diseño de grupo control y post prueba Según este diseño se requiere de dos grupos, uno de experimental y otro de control donde los elementos han sido asignados. El investigador aplica la variable experimental o variable independiente al GE, posteriormente evalúa a los dos grupos en la variable dependiente.

La comparación entre las pruebas de ambos grupos nos indica si hubo o no efecto de la manipulación.

Se diseña:

 $GE: \dots X \dots O1$ $GC: \dots O2$

Donde:

O1: Observación de variable dependiente GE.

O2: Observación de variable dependiente GC.

X: tratamiento o estimulo con AG.

3.6. Población, muestra y muestreo

3.6.1. Población

La población en la cual se realizara la siguiente investigación, es una edificación de concreto armado.

3.6.2. Muestra

La muestra que se eligió para el presente trabajo de investigación es una edificación aporticada de 12 pisos.

3.7. Técnicas e instrumentos de recolección de datos

Las principales técnicas que se utilizará en este estudio serán:

- Guías de observación y observación directa (reportes de resultados obtenidos y comparación)
- Guías de análisis documental y contenido (libros, normas y reglamentos).

Instrumentos

Los instrumentos a utilizar será:

- Computadora con Procesador Intel® Core i7
- lenguaje de programación Fortran.
- Software Comerciales ETABS v. 2016

3.8. Procedimiento de recolección de datos

Se emplea como técnica de recopilación de información la observación estructurada mediante el registro sistemático, valido y confiable de bibliografía referente al análisis y diseño de edificaciones con aislamiento sísmico. El acopio de la información se enfoca en las publicaciones efectuadas por instituciones públicas y privadas relacionadas al aislamiento sísmico, así como la experiencia laboral del autor en dicho tema. En este nivel nos abocaremos en la obtención de información en fuentes como libros, catálogos, monografías, revistas, tesis, internet, prensa y otros.

Para la recolección de información se recurrió a la fuente primaria es decir a la información escrita, También se recurrió a la fuente secundaria que es una investigación documental (textos, documentos, planos, Tesis, Artículos Científicos, etc). Como también se abarco en la recolección de información de estudios nacionales e internacionales.

3.9. Técnicas de procesamiento y análisis de datos

Para el procesamiento de datos se utilizó los programas

3.9.1. Análisis de datos

- Interpretación de los resultados de la Optimización realizado mediante Algoritmos Genéticos.
- Análisis y interpretación de los diseños realizados con el programa ETABS 2016.
- Tabulación de la función de los variables analizados

Capítulo IV: Resultados

4.1. Presentación de resultados

En este capitulo se muestran los resultados y el análisis de acuerdo a la metodología propuesta.

4.1.1. Descripción de la estructura

La estructura en estudio corresponde a una Edificación compuesta por 12 niveles en una área de 975,00m2 aproximadamente destinado para uso de oficinas . Esta edificación presenta una forma rectangular de 25m de ancho y 39mde largo, siendo la altura del primer nivel de 4,50m y los niveles posteriores de 3,50m.

La edificación que se analiza está conformada por un sistema donde en las dos direcciones X-Y predominan pórticos de concreto armado, la configuración es regular en planta y elevación como se observa en la figura 8.2. La edificación propuesta esta situada en la ciudad de Huancavelica, en una zona donde el suelo presenta características de tipo S2 (suelos intermedios).

4.1.1.1. Códigos y normativas

En todo el proceso de análisis y diseño se utilizarán las normas comprendidas en el **Reglamento Nacional de Edificaciones (R.N.E.)** y algunas normas complementarias como el ACI 318-2011, FEMA 274/376, VISION 2000, ASCE 7-10.

4.1.1.2. Datos generales, materiales y cargas

Categoría de la edificación:	De acuerdo al Reglamento Nacional de Edi-
	ficaciones y su norma de Diseño Sismorre-
	sistente E.030, se categoriza a la edificación
	como Comunes (C).
Configuración estructural:	Tiene una configuración regular en planta,
	tanto como en geometría vertical.
Sistema estructural:	Se define un Sistema Estructural de Concreto
	Armado Aporticado.

Los siguientes materiales han sido considerados en el presente estudio:

Material	Propiedad	Símbolo	Valor
	Resistencia a la compresión	f'c	$210 kg/cm^2$
Concrete	Módulo de elasticidad	Ec	$218819,789 kg/cm^2$
Concreto	Peso específico	γ	$2400 kg/cm^2$
	Coeficiente de Poisson	ν	$0.2 kg/cm^2$
Acoro	Esfuerzo de fluencia	Fy	$4200 kg/cm^2$
Acero	Módulo de elasticidad	Es	$2100000 kg/cm^2$

Tabla 4.1: Características mecánicas de los materiales

4.1.2. Pre dimensionamiento de elementos estructurales

Mediante el pre dimensionamiento se brindará las dimensiones teniendo las condiciones mas desfavorables a las secciones de los elementos estructurales para que tengan una buena respuesta ante solicitaciones por carga de gravedad y de sismo.

4.1.2.1. Losa maciza armado en dos direcciones

Es la mezcla de concreto y varillas de acero, formando una losa monolítica. A mayor espesor, mayor rigidez pudiendo cubrir mayor distancia entre sus apoyos. Los cuales la relación de luz mayor a la luz menor es igual o mayor que 2.0. Cuando esta relación es menor que 2 el panel de piso llega a ser una losa en dos direcciones.

El peralte de las losas maciza en dos direcciones serán dimensionadas según la Norma de Concreto Armado E.060 39, con la siguiente ecuación 4.1:

$$h \ge \frac{\ln}{40} \quad h \ge \frac{p}{180} \tag{4.1}$$

ln = 5m

$$h = \frac{1}{40} \times 5 = 0,125m$$
$$h = \frac{1}{180} \times 23 = 0,1277m$$

Por lo tanto manda la condición mas desfavorable, la losa maciza armada en dos direcciones de espesor requerido para el presente trabajo sera 13cm para todos los niveles.

4.1.2.2. Vigas

Las vigas generalmente se dimensionan considerando la luz libre, ya que el peralte está en orden de la siguiente ecuación 4.2:

$$h = \left(\frac{1}{10}a\frac{1}{12}\right) \times l \tag{4.2}$$

Y la base es variable de:

$$b = \left(\frac{3}{10}a\frac{1}{2}\right) \times h \tag{4.3}$$

VIGAS									
Tipo	Peralte		Base		Peralte Ontado(m)	Base Ontado(m)			
	L/10	L/12	3/10 H	1/2 H					
VP-101	0.65	0.550	0.195	0.325	0.65	0.35			
VP-102	0.50	0.416	0.150	0.250	0.50	0.25			

Tabla 4.2: Dimensiones de las vigas

Por lo tanto las dimensiones de las de vigas que se usara en toda la edificación es de VP-101 (0,35x0,70cm) en eje x-x, VP-102 (30x60cm) en eje y-y.

4.1.2.3. Columnas

Las columnas son elementos estructurales que soportan tanto cargas verticales (peso propio) como fuerzas horizontales (sismos y vientos) y trabajan a flexo-compresión y cortante.

• Columnas centradas:

Columnas Excéntricas y Esquinadas:

Siendo:

$$P(servicio) = P.A.N \tag{4.6}$$

A: área tributaria

N: numero de pisos

La carga P se obtiene como la suma total de las cargas de gravedad que inciden en el área tributaria de la columna.

	COLUMNAS								
TIPO	P (kg/m2)	Area (m2)	f'c (kg/cm2)	N	a (cm)	a (aprox.)			
C1	1000	32.50	210	12	64.24	0.65			
C2	1000	16.25	210	12	51.51	0.50			
C3	1000	12.25	210	12	44.72	0.45			
C4	1000	8.125	210	12	36.42	0.35			

Tabla 4.3: Dimensiones de las Columnas

Las secciones finales de las columnas serán uniformes, variaran y son los siguientes; 35x120cm del 1° al 6° piso 35x80cm de 7° al 9° piso, 35x50cm de 10° al 12° piso.

4.1.3. Metrado de cargas

El Metrado de cargas consiste en estimar las cargas verticales actuantes sobre los distintos elementos estructurales que componen el edificio. Estos valores están divididos en dos tipos de cargas, carga muerta (CM), y carga viva (CV).

A continuación, se definen las cargas consideras según la Norma E.020 para el diseño

Tipo de Carga	Cargas Unitarias	Valor
WANK	Peso de losa maciza (13cm)	$0,312Tn/m^{3}$
Carga Muerta	Peso de tabiqueria	$0,10Tn/m^2$
	Peso de piso terminado	$0,10Tn/m^2$
C V:	Sobre carga (Piso Típico)	$0,25Tn/m^2$
Carga viva	Sobre carga (Azotea)	$0,10Tn/m^2$

Tabla 4.4: Cargas consideradas para el metrado

La estructura se clasifico como categoría C, por lo tanto el peso que se ha considerado para el análisis sísmico es el 100 % de la carga muerta, más el 25 % de la carga viva.

4.1.4. Análisis sísmico de la edificación

De acuerdo a los procedimientos señalados y tomando en cuenta las características de los materiales y cargas que actúan sobre la estructura que influyen en el comportamiento de la misma ante las solicitaciones sísmicas, se muestra a continuación el análisis realizado.

El comportamiento dinámico de las estructuras se determina mediante la generación de los modelos matemáticos que consideren la contribución de los elementos estructurales en la determinación de la rigidez lateral de cada nivel de la estructura. Las fuerzas de los sismos son del tipo inercial y proporcional a su peso, por lo que es necesario precisar la cantidad y distribución de fuerzas en las masas de la estructura. La estructura ha sido analizada con losa supuesta como infinitamente rígida frente a las acciones en su plano Los apoyos han sido considerados como empotrados en el suelo. Se ha modelado la edificación tomando lo anteriormente dicho

Figura 4.2: Vista en 3D de la Edificación Aporticada

Figura 4.4: Vista en elevación del modelo y-y

Es importante mencionar la descripción final de la edificación aporticada; las dimensiones finales de los elementos de la estructura son de losa maciza armada en dos direcciones de 13*cm*, columnas de 35*x*120*cm* del 1° al 6° piso, de 35*x*80*cm* del 7° al 9° piso, de 35*x*50*cm* del 10° al 12° piso, Vigas de VP - 101(35x70cm) de 1° al 10° piso, VP - 101(25x50cm) de 10° al 12° piso, en eje x-x, VP - 102(30x60cm) del 1° al 10° piso, VP - 102(25x50cm) de 10° al 12° piso en eje y-y.

4.1.4.1. Consideraciones sísmicas

La masa de la estructura es determinada considerando el 100% de cargas permanentes (peso muerto) más el incremento del 25% de las sobrecargas por cada nivel y finalmente un aporte del 25% de sobrecarga en techos según lo estipulado en la Norma Sismorresistente E.030.

4.1.4.1.1. Espectro de diseño

El análisis sísmico se realiza por superposición espectral, generándose el espectro de diseño según el factor de zona, categoría de edificación, tipo de suelo y sistema estructural.

Para la determinación del espectro de respuesta se usan los siguientes parámetros de diseño, los cuales se encuentran especificados en la norma vigente de Diseño Sismorresistente E.030.

Descripción	Símbolo	Tipo	Valor
Factor de zona	\mathbf{Z}	Zona 3	0.35
Categoría de la edificación	\mathbf{U}	С	1.0
Tipo de suelo (condiciones geotécnicas)	\mathbf{S}	Perfil Tipo $S2$	1.15
Período Fundamental	T_{P}		0.60
	$\mathbf{T}_{\mathbf{L}}$		2.00
Sistema Estructural (x-x)	R_x	Portico	8
Sistema Estructural (y-y)	$\mathbf{R}_{\mathbf{y}}$	Pórtico	8

Tabla 4.5: Parámetros empleados para el análisis Sismorresistente

Se genera el espectro de pseudo aceleraciones, tomando los factores y características de sitio, el factor de amplificación sísmica (C) se define a partir de las siguientes expresiones:

$$T < T_p \quad C = 2.5 \tag{4.7}$$

$$T_p < T < T_L \quad C = 2.5 \left(\frac{T_P}{T}\right) \tag{4.8}$$

$$T > T_p \quad C = 2.5 \left(\frac{T_P \cdot T_L}{T}\right) \tag{4.9}$$

Figura 4.5: Espectro de Seudo Aceleraciones para el Sistema Aporticado

4.1.4.1.2. Pesos sísmicos y periodos de vibración de la edificación

Después del análisis de la estructura sin disipadores se muestra los resultados en las siguientes tablas.

Peso	Sísmico	Del Ec	lificio
N° PISO	CM(ton)	CV(ton)	$\mathbf{P_{total}(ton)}$
Piso 12	448.88	97.5	546.38
Piso 11	492.00	243.75	735,75
Piso 10	576.19	243.75	819.94
Piso 09	589.30	243.75	833.05
Piso 08	607.83	243.75	851.58
Piso 07	607.83	243.75	851.58
Piso 06	625.31	243.75	869.06
Piso 05	650.02	243.75	893.77
Piso 04	650.02	243.75	893.77
Piso 03	650.02	243.75	893.77
Piso 02	650.02	243.75	893.77
Piso 01	671.19	243.75	914.94
Total	7218.63	2778.75	9997.63

Tabla 4.6: Peso de cada niveles de la edificación

Periodos de Vibración de los								
		Modos						
Modal	Modo	Periodo(sec)	Dirección					
modal	1	1.345	X					
modal	2	1.324	Y					
modal	3	1.215	M. Torsión					
:	:		÷					
modal	36	0.034	M. Torsión					

Tabla 4.7: Periodos de vibración de modos

4.1.4.1.3. Desplazamientos y distorsiones de entrepiso

Para el control de la deriva de piso se realizo el cálculo de los desplazamientos laterales inelásticos según lo indica en RNE, en la norma E-030.

Piso	Desplaz. (mm)	Deriva x-x	Norma E.30	Verificación
12	217.686	0.005	0.007	Cumple
11	205.266	0.006	0.007	Cumple
10	188.142	0.006	0.007	Cumple
9	171.114	0.005	0.007	Cumple
8	156.114	0.005	0.007	Cumple
7	138.570	0.006	0.007	Cumple
6	119.178	0.005	0.007	Cumple
5	101.370	0.006	0.007	Cumple
4	82.296	0.006	0.007	Cumple
3	61.296	0.006	0.007	Cumple
2	40.680	0.006	0.007	Cumple
1	19.536	0.004	0.007	Cumple

Segun los valores obtenidos tenemos una deriva máxima de 0.006, según el RNE E-30 de diseño sismoresistente la deriva máxima para concreto armado es de 0.007, esto quiere decir que esta cumpliendo con esta condición.

Piso	Desplaz. (mm)	Deriva Y-Y	Norma E.30	Verificación
12	219.690	0.004	0.007	Cumple
11	209.075	0.006	0.007	Cumple
10	192.642	0.006	0.007	Cumple
9	174.384	0.005	0.007	Cumple
8	158.550	0.006	0.007	Cumple
7	140.130	0.006	0.007	Cumple
6	120.090	0.005	0.007	Cumple
5	102.180	0.006	0.007	Cumple
4	82.956	0.006	0.007	Cumple
3	62.436	0.006	0.007	Cumple
2	41.034	0.006	0.007	Cumple
1	19.794	0.004	0.007	Cumple

Tabla 4.9: Deriva de entrepiso para la dirección y-y

Segun los valores obtenidos tenemos una deriva máxima de 0.006, según el RNE E-30 de diseño sismoresistente, la deriva máxima para concreto armado es de 0.007, esto quiere decir que esta cumpliendo con esta condición.

Entonces en ambas direcciones las derivas de entrepiso cumplen con la deriva limite del reglamento, esto tiene por confirmado buena rigidez en ambos sentidos. Es evidente que la edificación planteada ante un sismo moderado tendrá una buena respuesta sin tener que añadir dispositivos de disipación de fluidos viscosos. El análisis del presente trabajo de investigación será evaluada a sismo severo y considerando la relación daño-deriva máxima de la metodología Hazus y el Vision 2000, esto indica que se tiene que superar dichas derivas y quedar abajo de la norma E.30 Peruana como también al limite de la normas americanas para alcanzar el nivel de comportamiento esperado.

4.1.4.1.4. Análisis tiempo historia

El análisis Tiempo historia no lineal es la mejor herramienta actualmente disponible para predecir la respuesta de un edificio en variados niveles de intensidad del movimiento del suelo.

Para realizar el análisis tiempo historia se utilizaran 3 pares de registros sísmicos, los cuales fueron proporcionados por el Instituto Geofísico del Perú, y fueron escalados según la norma E-030 2016 [39] capitulo 4. Item 4.7.1.

4.1.4.1.5. Registros de Aceleración

El principal problema con este tipo de análisis es la definición de la acción sísmica a emplear, pues la respuesta estructural es muy sensible al registro seleccionado como entrada.

Para cada par de componentes horizontales (x-x) y (y-y) de movimiento del suelo, se construirá un espectro de pseudo aceleraciones tomando la raíz cuadrada de la suma de los cuadrados (SRSS) de los valores espectrales calculados para cada componente por separado, con 5 % de amortiguamiento. Ambas componentes se escalarán por un mismo factor, de modo que en el rango de períodos entre 0, 2 T y 1, 5 T (siendo T el período fundamental), el promedio de los valores espectrales SRSS obtenidos para los distintos juegos de registros no sea menor que la ordenada correspondiente del espectro de diseño, calculada según el numeral 4.6.2 [Norma E.30] con R = 1. Para la generación de registros simulados deberán considerarse los valores de C, definidos en el numeral 2.5 [Norma E.30], excepto para la zona de períodos muy cortos ($T < 0, 2T_P$) en la que se considerará:

$$T < 0.2 T_p \quad C = 1 + 7.5 \left(\frac{T}{T_P}\right)$$
 (4.10)

El la siguiente figura se muestra el espectro de pseudo aceleraciones con los parámetros de la tabla 4.5 y con R = 1.

Figura 4.6: Espectros de las componentes de los registros

4.1.4.1.6. Escalamiento de acelerogramas al espectro de diseño

Para realizar el escalamiento adecuado se utilizo los programas de la compañía Seismosoft Ltd. SeismoSignal y SeismoMatch.

A continuación se muestra los registros sísmicos en las dos direcciones "E-O" y "N-S" obtenidas de la pagina: http://www.sencico.gob.pe/gin/investigacion. html. Los registros sísmicos se descargaron tomando en cuenta sus magnitudes mas altos.

Estación	Fecha	Magnitud	Componente	Aceleración
acelerometrica				máxima (cm/s^2)
Aroquipa	13/06/2005	7.2 ML	E-O	80.92
Arequipa			N-S	65.12
Leo	15/08/2007	7.0 ML	E-O	272.82
Ica			N-S	333.66
Moquorus	a 23/06/2001	6.9 MB	E-O	-295.15
Moquegua			N-S	219.99

Tabla 4.10: registros sísmicos para realizar el análisis dinámico tiempo historia

Figura 4.7: Espectros de las componentes de los registros

Con el programa SeismoSignal se hicieron los siguientes ajustes en los señales sísmicos utilizados.

- corrección de la linea base: Este proceso se utiliza para evitar la desviación de los acelerogramas respecto al centro, aplicando al acelerograma una corrección punto a punto igual al promedio aritmético del registro.
- Corrección por filtrado de señales: Es un proceso computacional que convierte una secuencia de números representada por la señal de entrada en otra secuencia representada por la señal de salida, se emplea para remover componentes frecuenciales no deseadas para una señal dada, esto se produce debido a factores como el paso de automóviles, ruido ambiental, etc.

Una vez realizado la corrección de la linea de base y filtrado de señales,

ahora se realizara el escalado con el programa SeismoMatch, solo mostraremos a manera de ejemplo con el sismo de Arequipa 2005, ya que en el resto se realizara el mismo procedimiento.

Figura 4.8: Espectro de diseño (rojo), registro sísmico sin escalar (Azul) y escalado (verde) componente (E-O)

Figura 4.9: Espectro de diseño (rojo), registro sísmico sin escalar (Azul) y escalado (verde) componente (N-S)

En la siguiente gráfica se resume toda los señales de registro escalado.

Con estas consideraciones procedemos a realizar el análisis de Tiempo-Historia para la edificación en estudio, obteniéndose los derivas de entrepiso en la tabla 4.1.4.1.6.

Figura 4.10: registro sísmico escalado

	DERIVAS DE ENTREPISO DIRECCION X-X							
			ANA	LISIS TIEI	MPO HIST	ORIA		
PISC	ANA. DINAMICO	AREQU	PA 2005	ICA	2007	MOQUE	GUA 2001	
	ESPECTRAL R=1	OE	NS	OE	NS	OE	NS	
12	0.00606	0.00752	0.00457	0.00688	0.00522	0.00496	0.00580	
11	0.00822	0.01047	0.00720	0.00933	0.00822	0.00707	0.00887	
10	0.00767	0.01000	0.00767	0.00797	0.00857	0.00697	0.00899	
9	0.00640	0.00815	0.00675	0.00605	0.00670	0.00654	0.00689	
8	0.00727	0.00885	0.00798	0.00666	0.00746	0.00772	0.00716	
7	0.00781	0.00892	0.00867	0.00737	0.00824	0.00848	0.00763	
6	0.00700	0.00750	0.00754	0.00669	0.00751	0.00759	0.00656	
5	0.00741	0.00760	0.00789	0.00725	0.00810	0.00791	0.00674	
4	0.00783	0.00775	0.00830	0.00784	0.00854	0.00820	0.00693	
3	0.00812	0.00797	0.00854	0.00811	0.00868	0.00830	0.00710	
2	0.00806	0.00815	0.00835	0.00792	0.00834	0.00799	0.00691	
1	0.00579	0.00595	0.00597	0.00560	0.00588	0.00563	0.00497	

Tabla 4.11: Derivas de entrepiso en la dirección (X-X)

	DERIVAS DE ENTREPISO DIRECCION Y-Y							
			ANA	LISIS TIEI	MPO HIST	ORIA		
PISO	ANA. DINAMICO	AREQUI	PA 2005	ICA	2007	MOQUE	GUA 2001	
1150	ESPECTRAL R=1	OE	NS	OE	NS	OE	NS	
12	0.00505	0.00578	0.00607	0.00628	0.00523	0.00698	0.00418	
11	0.00777	0.00810	0.00952	0.00876	0.00806	0.00938	0.00671	
10	0.00825	0.00752	0.01024	0.00801	0.00802	0.00832	0.00751	
9	0.00680	0.00659	0.00834	0.00618	0.00654	0.00647	0.00658	
8	0.00768	0.00773	0.00904	0.00707	0.00727	0.00685	0.00782	
7	0.00812	0.00847	0.00888	0.00809	0.00726	0.00695	0.00856	
6	0.00707	0.00758	0.00708	0.00757	0.00617	0.00619	0.00748	
5	0.00748	0.00794	0.00702	0.00811	0.00680	0.00648	0.00777	
4	0.00790	0.00830	0.00724	0.00851	0.00742	0.00675	0.00804	
3	0.00818	0.00853	0.00756	0.00862	0.00770	0.00685	0.00819	
2	0.00810	0.00839	0.00777	0.00830	0.00745	0.00660	0.00788	
1	0.00587	0.00599	0.00576	0.00583	0.00534	0.00471	0.00556	

Tabla 4.12: Derivas de entrepiso en la dirección (Y-Y)

En la tabla se muestran las variaciones que presenta las derivas calculadas en cada caso de análisis de tiempo historia, con respecto a las derivas obtenidas del análisis dinámico espectral.

4.1.4.1.7. Determinación de los sismos de diseño

El reglamento pide que se utilice al menos como mínimo tres conjuntos de registros de aceleraciones del terreno, cada uno de los cuales incluirá dos componentes en direcciones ortogonales 39. Como criterio adicional usaremos los tres registros seleccionados tomados.

		ANALISIS TIEMPO HISTORIA					
	AREG	QUIPA	IC	ICA		MOQUEGUA	
FISO	OE	NS	OE	NS	OE	NS	
12	1.45	-0.48	0.82	0.17	-1.11	0.75	
11	2.26	-0.56	1.12	0.45	-1.15	1.10	
10	2.33	-0.58	0.30	0.32	-0.70	0.75	
9	1.75	-0.05	-0.35	-0.10	0.13	0.09	
8	1.59	0.31	-0.61	-0.22	0.46	-0.52	
7	1.11	0.56	-0.44	0.12	0.66	-0.48	
6	0.50	0.47	-0.31	0.44	0.59	-0.51	
5	0.20	0.42	-0.15	0.62	0.51	-0.74	
4	-0.08	0.40	0.01	0.65	0.37	-0.96	
3	-0.15	0.36	-0.01	0.50	0.18	-1.09	
2	0.09	0.25	-0.14	0.24	-0.07	-1.18	
1	0.16	0.11	-0.19	0.02	-0.16	-0.89	

Tabla 4.13: Eleccion de sismos de diseño con R=1, en la dirección (X-X))

					100.000			
		ANALISIS TIEMPO HISTORIA						
	AREG)UIPA	IC	CA	MOQI	MOQUEGUA		
F150	OE	NS	OE	NS	OE	NS		
12	0.73	1.02	1.22	0.18	1.92	-0.87		
11	0.34	1.76	0.99	0.29	1.61	-1.06		
10	-0.73	2.00	-0.23	-0.23	0.07	-0.74		
9	-0.21	1.54	-0.62	-0.26	-0.33	-0.22		
8	0.05	1.36	-0.60	-0.41	-0.83	0.15		
7	0.36	0.76	-0.03	-0.86	-1.17	0.44		
6	0.52	0.01	0.50	-0.90	-0.88	0.41		
5	0.46	-0.46	0.63	-0.67	-1.00	0.29		
4	0.41	-0.66	0.62	-0.47	-1.14	0.15		
3	0.35	-0.62	0.44	-0.49	-1.33	0.00		
2	0.30	-0.33	0.20	-0.64	-1.50	-0.22		
1	0.12	-0.11	-0.03	-0.52	-1.15	-0.31		

Tabla 4.14: Eleccion de sismos de diseño con R=1, en la dirección (Y-Y)

De la tabla 4.13 y 4.14 se observa para el sismo de Arquipa 2005 en ambas componentes superan el 1.5% de variación, por lo tanto se descarta caso Arquipa, el sismo Moquegua 2001 en su componente Y-Y en uno de sus casos igualmente superan el 1.5%, quedando solo con los sismos de Ica 2007 y

Moquegua 2001 en su componente X-X. Para completar con los tres registros sísmicos, se procedió a obtener mediante la simulación de un nuevo registro sísmico con software SeismoArtif 2016, a partir del espectro de diseño creado para dicho análisis de la edificación tomando en consideración el tipo de suelo y sus parámetros respectivos, el sismo simulado tiene un periodo dominante mayor cercano al periodo fundamental de la edificación planteada debido a que se puede presentar la degradación de rigidez ante cargas cíclicas. finalmente se elige sismos Ica 2007, Moquegua 2001 y Sismo Artificial sintético, con el cual se procede determinar la búsqueda de Cd del amortiguador viscoso no lineal para su distribución en la edificación mediante el uso de Algoritmos. Genéticos.

4.1.5. Elección del objetivo de desempeño

Los objetivos del diseño sismorresistente se pueden definir estableciendo el desempeño estructural que debe tener cada tipo de edificios en cada sismo de diseño.

Nivel de amenaza sísmica

Los movimientos sísmicos de diseño según el comité VISION 2000 son expresados en términos de intervalos de ocurrencia y en función de la probabilidad de excedencia como se muestra en la tabla 2.1.

Para presente caso en estudio, se ha considerado como sismo de diseño a un sismo raro con una probabilidad de excedencia de 10% en 50 años y con un periodo de retorno de 475 años.

Nivel de desempeño

El nivel de desempeño describe un estado límite de daño los cuales representa una condición en función a posibles daños físicos en elementos estructurales y no estructurales, la seguridad de los ocupantes de la edificación y la operatividad de la edificación luego del evento sísmico 45.

De acuerdo a la tabla 2.2 se va considerar a la edificación en un nivel de desempeño de seguridad de vida.

Nivel de comportamiento sísmico esperado

El nivel de desempeño de la edificación será de seguridad de vida, teniendo un daño moderado, con la cual se garantizará la estabilidad de las personas y de la edificación (ver fig 2.2.).

Deriva objetivo

Para obtener la deriva objetivo, se tomo el documento Multi-Hazard Loss Estimation Methodology HAZUS, elaborado por la FEMA. La cual está en función al sistema estructural y altura de la edificación, la clasificación se muestra el siguiente tabla 4.15 :

Descripción	Nombre	Numero de Pisos	Designación
N/ANK	Bajos	1-3	C1L
Pórticos de concreto	Medianos	4-7	C1M
armado (C1)	Altos	8+	C1H
	Bajos	1-3	C2L
Muros de corte de	Medianos	4-7	C2M
concrete (C2)	Altos	8+	C2H
Pórticos de Concreto	Bajos	1-3	C3L
Armado rellenos con	Medianos	4-7	C3M
Muros de Albafiilerla (C3)	Altos	8+	СЗН

Tabla 4.15: Clasificación según tipo de Estructura, Multi-Hazard Loss Estimation Methodology [HAZUS, 2010]

La clasificación según la tabla 4.15 la estructura se clasifica como un tipo C1H, donde la deriva para un daño moderado es de 0.0043 que es el deriva limite. para nuestro edificación a desarrollar (ver tabla 4.16). Cabe señalar que la Norma Peruana E-030 para edificios de concreto armado, fija la deriva máxima en 0.007, no se usara la E-030, se desarrollara mediante la metodología Hazus.

		Distorsion A estructur	Distorsion Angular de entrepiso en el limite de daño estructural, δ_{ab} en edificios de concreto armado				
INIVEL de	tipo	Daño	Daño	Daño	Daño		
diseño		leve	moderado	severo	completo		
	C1L	0.0050	0.0100	0.0300	0.0800		
	C1M	0.0033	0.0067	0.0200	0.0533		
	C1H	0.0025	0.0050	0.0150	0.0400		
Alto	C2L	0.0040	0.0100	0.0300	0.0800		
	C2M	0.0027	0.0067	0.0200	0.0533		
	C2H	0.0020	0.0050	0.0150	0.0400		
	C1L	0.0050	0.0087	0.0230	0.0600		
- 10	C1M	0.0033	0.0058	0.0156	0.0400		
	C1H	0.0025	0.0043	0.0117	0.0300		
Moderado	C2L	0.0040	0.0084	0.0232	0.0600		
	C2M	0.0027	0.0056	0.0154	0.0400		
	C2H	0.0020	0.0042	0.0116	0.0300		
	C1L	0.0050	0.0080	0.0020	0.0500		
5-1	C1M	0.0033	0.0053	0.0133	0.0333		
	C1H	0.0025	0.0040	0.0100	0.0250		
	C2L	0.0040	0.0076	0.0197	0.0500		
Bajo	C2M	0.0027	0.0051	0.0132	0.0333		
	C2H	0.0020	0.0038	0.0099	0.0250		
	C3L	0.0030	0.0060	0.0150	0.0350		
Yest.	C3M	0.0020	0.0040	0.0100	0.0233		
	C3H	0.0015	0.0030	0.0075	0.0175		
	C1L	0.0040	0.0064	0.0160	0.0400		
	C1M	0.0027	0.0043	0.0107	0.0267		
	C1H	0.0020	0.0032	0.0080	0.0200		
	C2L	0.0032	0.0061	0.0158	0.0400		
Pre-codigo	C2M	0.0021	0.0041	0.0105	0.0267		
	C2H	0.0016	0.0031	0.0079	0.0200		
	C3L	0.0024	0.0048	0.0120	0.0280		
	C3M	0.0016	0.0032	0.0080	0.0187		
	C3H	0.0012	0.0024	0.0060	0.0140		

Tabla 4.16: Niveles de desempeño y derivas objetivo (HAZUS Y SEAOC VI-SION 2000).

4.1.6. Diseño de la edificación con la distribución óptima de amortiguadores viscosos

Ya definido la estructura en la sección anterior, se procederá a desarrollar un método de diseño optimo mediante el uso de Algoritmos genéticos para la distribución eficiente de los disipadores viscosos de energía que sea capaz de aminorar la demanda de disipación de energía a través de la inelasticidad en los elementos estructurales, evitando así la posible falla de estos ante un evento sísmico. Se realizara un análisis de tiempo historia mediante el programa ETABS 2016, usando 3 pares de registros sísmicos como lo indica el Reglamento Nacional de Edificaciones la E-030 de diseño sismorresistente.

4.1.6.0.1. Porcentajes de amortiguamientos para la optimización

Se realizaron análisis del edificio planteado inicialmente usando espectros con diferentes porcentajes de amortiguamiento critico, con los mismos pasos desarrollados incluyendo el analisis con efecto de sismo utilizando los registros sísmicos seleccionados.

Se construyo a partir del registro sísmico artificial generado, ya que con esto se genera la máxima respuesta estructural, con la ayuda del programa Seismosignal se realizo el espectro de respuesta con 5%, 15%, 25%, 30% y 35% de amortiguamiento para ambos componentes "x" y "y" como se muestra en la figura 4.11 y 4.12.

Figura 4.11: Espectro del registro sismico artificial "X" construido con 5%, 15%, 25%, 30% y 35% de amortiguamiento.

Figura 4.12: Espectro del registro sismico artificial "Y" construido con 5%, 15%, 25%, 30% y 35% de amortiguamiento.

Luego se procedio a realizar el análisis espectral con los espectros creados para los diferentes tipos de amortiguamiento, como se observa en la gráfica 4.14 y 4.13.

Figura 4.14: Máxima deriva en la dirección y-y

En la gráfica se puede observar las derivas de entrepiso máximos con los diferentes porcentajes de amortiguamiento, donde se puede deducir que con 32% de amortiguamiento serian suficientes para absorber la energía sísmica de la estructura.

4.1.6.0.2. Sistema de amortiguación propuesto

Después de construidos los modelos matemáticos se procedió a determinar

la mejor ubicación de los disipadores, así como la cantidad adecuada de los dispositivos. El sistema de Amortiguación se instaló en la configuración diagonal y en ambos lados de la estructura (cuatro dispositivos de amortiguación por piso). Los dispositivos de amortiguación, mostrados en la figura 4.15, son amortiguadores viscosos no lineales con una constante de amortiguación C_d variable en toda la altura.

Figura 4.16: Vista en 3D de la edificación con disipadores viscosos

Estos disipadores están fabricados por Taylor Devices, North Tonawanda, NY. Basándose en los procedimientos presentados en FEMA 273 y 274 (FEMA, 1997).

4.1.6.0.3. Declaración de los parámetros que intervienen en la optimización

Después de realizar el análisis, se seleccionaron los variables y componentes del problema de optimización para el modelo estructural analizado. A continuación, se describirá a detalle la manera en que se implementó cada uno de los procesos que describen a los Algoritmos Genéticos.

Los parámetros empleados en el algoritmo de optimización son: Población Inicial (15 individuos) por generación, probabilidad de cruzamiento (65%), probabilidad de mutación (3%), elitismo (90%,) número máximo de generaciones (30).

Se realiza la búsqueda hasta encontrar la mejor solución del frente de pareto, donde los coeficientes C_d del disipador fluido viscosos serán variables en la altura del edificio. Se muestra la propuesta presentado en la figura 4.17.

Figura 4.17: Programa realizado para el diseño de amortiguadores en una edificación "DeViDaAGs"

4.1.7. Resultados obtenidos para la dirección X

Una vez codificado en cadenas de bits los individuos que representan los valores de coeficiente de amortiguador y el exponente codificado se procede a evaluar.

El exponente α varía entre 0.4 y 0.6 para edificaciones, inicialmente se opta exponente del amortiguador variable en la altura del edificio, pero debido a que se presentaron alta variabilidad en la altura del edificio se opto por tomar un valor definido de $\alpha = 0.6$.

Se realizaron 30 generaciones, para encontrar algunas posibles soluciones aceptables al frente de pareto, encontrando entre ellas candidatos mas de una solución aceptable, los mejores resultados se logran en mayor numero de generaciones a analizar, pero como el proceso que tarda en completarse una generación se optó por no seguir teniendo en cuenta para nuestro caso, se obtuvieron candidatos de solución. Los mejores valores de aptitud para los escenarios fueron encontrados alrededor de las 30 generaciones (Figura 5.2).

En la siguiente tabla 4.17 se muestra las soluciones que representan al frente de pareto, es decir. aquellos que tengan valores con las calificaciones máximas de la función objetiva, encontrando tres posibles resultados con mayores calificaciones que los otros candidatos, seleccionando entre estas para la configuración final.

Individuo	CDE	VDE	fun_obj
Gene_22 Indiv_13	88.10	0.82	72.23
Gene_25 Indiv_15	84.75	0.86	72.58
Gene_26 Indiv_06	89.45	0.82	73.34

Tabla 4.17: Individuos del Frente de Pareto, en la dirección X

En la Tabla 4.18 se muestran las características de los amortiguadores viscosos no lineales a lo alto del edificio para cada individuo.

D.	Gene_22 Indiv_13	Gene_26 Indiv_6	Gene_25 Indiv_15
Piso	C kg(s/cm)	C kg(s/cm)	C kg(s/cm)
1	52250.55	48307.11	985.86
2	60137.42	31547.50	61123.28
3	53236.41	61123.28	60137.42
4	56193.98	63095.00	51264.69
5	28589.92	28589.92	46335.39
6	48307.11	52250.55	52250.55
7	31547.50	23660.62	31547.50
8	37462.66	60137.42	37462.66
9	6901.02	32533.36	2957.58
10	14787.89	40420.23	42391.95
11	31547.50	24646.48	31547.50
12	1971.72	25632.34	11830.31

Tabla 4.18: Individuos del Frente de Pareto, en la dirección X

A continuación se muestran las derivas de entrepiso así como regularidad de disipación de energía a lo alto del edificio, para cada individuo perteneciente al función objetivo.

Figura 4.18: Generacion gene_22 Indiv_13, dirección x

Figura 4.20: Generacion gene_26 Indiv_6, dirección x

4.1.8. Resultados obtenidos para la dirección Y

Los resultados para esta dirección Y-Y se analiza con los mismos pasos y parámetros considerados en la dirección X-X. de la misma forma se realizaron 30 generaciones, para tener candidatos posibles de solución. Se detiene el programa cuando en el transcurso de las generaciones no hay cambios en los valores de FA de los individuos. De manera que, se repite la mejor solución encontrada en la generación debido al Elitismo por lo tanto las calificaciones no bajaran de los máximos, dicho de otra forma el mejor individuo de la población actual puede fracasar en producir descendientes para la próxima generación. Para evitar esto se utilizo la estrategia elitista que copia el mejor individuo de la población actual en la nueva población, consiguiendo con ello un aumento de la velocidad en la obtención del individuo óptimo. Los mejores candidatos de solución al frente de pareto para los escenarios fueron encontrados alrededor de los 30 generaciones (Figura 5.2).

En la siguiente tabla 4.19 se muestra las soluciones que representan al frente de pareto, con las calificaciones máximas de la función objetiva, encontrando tres posibles resultados con mayores calificaciones que los otros candidatos, de igual manera se selecciono entre estas para la configuración final.

Individuo	Vdrien	E_dis	fun_obj
Gene_15 Indiv_5	83.12	0.88	73.13
Gene_28 Indiv_15	81.90	0.83	70.70
Gene_30 Indiv_4	85.19	0.94	76.99

Tabla 4.19: Individuos del frente de pareto, en la dirección Y

En la Tabla 4.20 se muestran las características de los amortiguadores viscosos no lineales a lo alto del edificio para cada individuo.

D:	Gene_15 Indiv_5	Gene_28 Indiv_15	Gene_30 Indiv_4
Piso	C kg(s/cm)	C kg(s/cm)	C kg(s/cm)
1	2957.58	44363.67	34505.08
2	60137.42	52250.55	53236.41
3	60137.42	36476.8	36476.8
4	44363.67	42391.95	40420.23
5	34505.08	39434.38	32533.36
6	44363.67	56193.98	60137.42
7	57179.84	51264.69	54222.27
8	43377.81	59151.56	25632.34
9	42391.95	54222.27	23660.62
10	21688.91	37462.66	61123.28
11	21688.91	5915.16	1971.72
12	8872.73	985.86	56193.98

Tabla 4.20: Individuos del frente de pareto, en la dirección Y

A continuación se muestran las derivas de entrepiso así como regularidad de disipación de energía a lo alto del edificio, para cada individuo perteneciente al función objetivo.

Figura 4.21: Generación gene_15 Indiv_5, dirección y

Figura 4.23: Generación gene_30 Indiv_4, dirección y

piso	C_x (T-s/m)	F_x (tn)	De_x (cm)	C_y (T-s/m)	F_y (tn)	De_y (cm)
1	765.62	162.98	1.16	703.12	132.64	1.06
2	499.99	193.71	1.31	828.12	161.58	1.23
3	968.74	166.31	1.31	578.12	117.35	1.24
4	999.99	171.88	1.25	671.87	135.77	1.17
5	453.12	91.89	1.21	624.99	126.83	1.08
6	828.12	155.41	1.12	890.61	159.17	0.96
7	375.00	117.33	1.25	812.49	156.40	1.05
8	953.11	67.29	1.28	937.49	170.97	0.91
9	515.62	25.82	1.21	859.37	151.73	0.76
10	640.62	57.76	1.33	593.74	128.02	0.96
11	390.62	103.37	1.08	93.75	23.77	1.10
12	406.25	4.00	0.97	15.62	4.09	0.74

En la tabla 4.21 se resume los valores obtenidos de la generación_26 individuo_6 dirección "x" y la generación_30 individuo_4 dirección "y"

Tabla 4.21: distribución final de los dispadores

4.1.9. Balance energético

En la figura 4.24 y 4.25 se muestra el balance energético de la edificación, donde en la figura 4.25 se puede apreciar la energía de entrada es absorbida en un porcentaje menor por la estructura y la gran mayoría es absorbida por los disipadores de energía propuesta (disipadores fluido viscosos), esto indica en porcentajes de 75% de absorción para la dirección X-X, y en la dirección y-y 74.5%, el resultado es muy significativo, es decir, capacidad de respuesta estructural es mayor que la demanda sísmica, de igual forma se aprecia aumento de la energía de amortiguamiento, reduciendo la demanda de disipación de energía por ductilidad.

% disipacion de Energia =
$$\frac{\text{energia disipada por dispositivos}}{\text{energia disipada por sismo}}$$
 (4.11)

Figura 4.24: Distribución de energía sin disipadores

De la gráfica obtenemos:

(

$$\% = \frac{1163,24}{1394,84} = 0,834 = 83\%$$

Con el resultado alcanzado los disipadores fluido viscosos tienen un buen funcionamiento en cuanto a la disipación de energía.

4.1.10. Fuerza y diseño de los dispositivos de amortiguamiento

Los resultados de las fuerzas de la generación_26 individuo_6 dirección "x" y la generación_30 individuo_4 dirección "y", se muestra en la tabla 4.22 y 4.23.

piso	forzl_x	fuer ton	KN
1	162978.92	162.98	1598.17
2	193712.64	193.71	1899.55
3	166309.03	166.31	1630.83
4	171879.24	171.88	1685.45
5	91893.20	91.89	901.10
6	155413.86	155.41	1523.99
7	117328.73	117.33	1150.53
8	67289.46	67.29	659.84
9	25823.76	25.82	253.23
10	57763.27	57.76	566.43
11	103366.92	103.37	1013.62
12	4003.87	4.00	39.26

Tabla 4.22:	Fuerzas	de los	disipadores	"X
-------------	---------	--------	-------------	----

piso	forzl_x	fuer ton	KN
1	132643.10	132.64	1300.70
2	161576.40	161.58	1584.42
3	117348.67	117.35	1150.72
4	135767.02	135.77	1331.33
5	126825.44	126.83	1243.65
6	159166.24	159.17	1560.78
7	156396.26	156.40	1533.62
8	170968.22	170.97	1676.51
9	151730.47	151.73	1487.87
10	128016.09	128.02	1255.33
11	23768.03	23.77	233.07
12	4088.51	4.09	40.09

Tabla 4.23: Fuerzas de los disipadores "Y"

En la siguiente tabla 4.24 se estandarizo Las fuerzas obtenidas, para ser expresadas en kN ya que son valores estándar del mercado donde la Empresa **Taylor Devices**, CDV Representaciones en Perú ofrece sus productos al mercado.

Fuerza	Cantidad de	Pisos	Cantidad de	Pisos	Total de
(KN)	dispositivo	(dir x-x)	dispositivo	(dir y-y)	dispositivos
250	8	9 y 12	8	11 y 12	16
750	8	8 y 10			8
1000	12	5,7 y 11	12	3,5 y 10	24
1500	8	1 y 6	24	1,2,4,6,7 y 9	32
2000	12	2 ,3 y 4	4	8	16

Tabla 4.24: Agrupación de los dispositivos a emplear

Los disipadores seleccionados poseen las características que la empresa CDV. Representaciones. requiere, donde el total de disipadores empleados es 96 en ambas direcciones; 16 paquetes con fuerza de 250KN, 8 paquetes de 750KN, 24 paquetes de 1000KN, 32 paquetes de 1500KN y 16 de 2000KN. Con esta cantidad de dispositivos se podrá contrarrestar fuerzas sísmicas que ingresara a la estructura, y el disipador trabajara en su máximo performance.

4.2. discusión

4.2.1. Prueba de hipótesis

HIPÓTESIS GENERAL

 Si en una edificación aporticada se utiliza una distribución óptima de amortiguadores viscosos no lineales mediante algoritmos genéticos, entonces se obtiene buen nivel de desempeño estructural frente a sismos intensos.

En función de los resultados se ACEPTA, la hipótesis general.

HIPÓTESIS ESPECÍFICOS

 Si en una edificación aporticada utiliza las variables más importantes para la distribución optima de amortiguadores viscosos no lineales entonces se obtiene un diseño sismorresistente eficiente mediante algoritmos genéticos.

Esta hipótesis especifico 1, se ACEPTA porque a partir de los variables planteadas de las derivas máximos de entrepisos y de la disipación de energía se logra controlar el comportamiento de la estructura.

 Si en una edificación aporticada se utiliza una distribución óptima de amortiguadores viscosos no lineales mediante algoritmos genéticos entonces la medida de las derivas de entrepisos frente a sismos intensos se encuentra en el límite según RNE E-030.

En función al resultado se RECHAZA esta hipótesis especifico 2, porque la deriva máxima permisible para concreto armado según reglamento peruano E.30 es de 0.007, consultando con nuestro resultado de la generación 26, individuo 6 en dirección x-x (tabla 4.20) La generación 30 individuo 4 (tabla 4.23) en dirección y-y, queda por debajo al limite permitido, se obtuvo una deriva máxima de 0.0043 al limite de la configuración permisible que exige según Hazus 99 Hazards-United States (ver tabla 4.16) esto por la clasificación según la tabla 4.15 donde la estructura se clasifica de tipo C1H, y la deriva para un daño moderado es de 0.0043, que fue la deriva limite para nuestro edificio en estudio (ver tabla 4.16). esto para mejorar su desempeño del edificio.

 Si en una edificación aporticada se aplica los criterios de diseño que se deben emplear para la distribución óptima de amortiguadores viscosos no Lineales entonces se alcanza un buen resultado en el nivel de daño frente a sismos intensos.

Esta hipótesis especifico 3, se ACEPTA, podemos precisar que se alcanza controlar los daños estructurales y no estructurales y su contenido, a partir de los criterios tomados: Nivel de amenaza sísmica (según VISION 2000, se considero como sismo de diseño aun sismo raro con una probabilidad de excedencia de 10 % en 50 años y con un periodo de retorno de 475 años), Nivel de desempeño (posibles daños físicos en elementos estructurales y no estructurales, la seguridad de los ocupantes de la edificación y la operatividad de la edificación luego del evento sísmico), Nivel de comportamiento sísmico esperado (el nivel de desempeño de la edificación sera de seguridad de vida, teniendo un daño moderado, con la cual se garantizara la estabilidad de las personas y de la edificación), y de Deriva objetivo (se tomo las tablas 4.15 y 4.16 Multi-Hazard Loss Estimation Methodology HAZUS, programa desarrollado por el FEMA. Para asociar el daño esperado con el desplazamiento de entrepiso de la estructura).

 Si en una edificación aporticada se utiliza una distribución optima de amortiguadores viscosos no lineales mediante algoritmos genéticos entonces se minimiza los costos, se tiene reducción en los desplazamientos, y un buen desempeño.

La hipótesis especifico 4 se ACEPTA, Los factores económicos de La estructura con disipadores son determinantes debido a que estos son altos y varian de precios mensualmente. Los disipadores de energía tendría un ahorro debido a que no es necesario un aumento de la sección de las columnas como alternativa de solución para rigidizar, y si la estructura se rigidiza entonces se tendría un incremento en el costo, como en concreto, acero y encofrado. La estructura con la inclusión de disipadores de energía, tendría un costo solo de los disipadores con fines de optimizar el costo mas exacto de estos dispositivos se tendría que incluir otro variable en función objetivo bajo las restricciones de costo del disipador actualizado y tamaños, es decir una optimización multiobjetiva, de esta manera se minimiza los costos en estructuras con inclusión de disipadores viscosos.

Si, se tiene una reducción de los desplazamientos, para la edificación en estudio sin disipadores tiene un desplazamiento de 29,37 cm en el sentido x-x, 30,43 cm en el sentido y-y, para la edificación con disipadores tiene un desplazamiento de 12.77 cm en el sentido x-x, 14.50 cm en el sentido y-y, comparando los resultados notablemente se reduce en un 56.52 % en dirección X-X, 52.35 % en dirección Y-Y respecto a la edificación convencional.

si, se alcanza un buen desempeño porque los componentes estructurales, no estructurales y el contenido para la acción sísmica no supera ciertos estados de limite.

Conclusiones y recomendaciones

5.1. Conclusiones

A continuación se presentan las conclusiones generales de esta investigación.

- A partir de los variables planteadas de las derivas máximos de entrepisos y de la disipación de energía y con la aplicación de Algoritmos genéticos (AG), se logra controlar el comportamiento de la estructura.
- El uso de algoritmos genéticos como procedimiento de búsqueda de soluciones para la distribución de amortiguadores viscosos no lineales es muy eficiente y robusto ya que para una generación de 30, los resultados son alcanzados a los limites propuesto de nuestro objetivo.
- En los análisis de los escenarios, se obtuvieron los mejores resultados debido al elitismo usado ya que en cada generación siempre permanecerán los mejores individuos.
- Se optó por generar 30 iteraciones ya que el tiempo de ejecución para cada individuo es un promedio 12 minutos, si una generación esta conformada por 15 individuos, y para 30 generaciones conformaría 450 individuos sumando un total de 5400 min de ejecución que equivale a 90 horas, con procesador Intel core i7, de 3 GHz, el análisis se realiza con tiempo historia no lineal, 3 registros sísmicos con sus dos componentes (EO-NS), la programación es en paralelo puesto que el análisis se hizo en las dos direcciones (X y Y), dando un total de tiempo de ejecución en paralelo de 90 horas, aproximadamente 3,75 días.

- En la estructura estudiada, los resultados mostraron que la distribución C_d de los dispositivos con la metodología propuesta, es más eficiente que una distribución C_d uniforme, dado que, con menor capacidad de amortiguamiento total incorporado, se logra el nivel de desempeño deseado.
- El aplicativo Design Viscous Dampers Genetic Algorithms (DeViDaAGs 1.0.1), desarrollada en su primera versión, se puede utilizar para distribuir de manera óptima la adición de disipadores de energía a nivel de sistemas estructurales de concreto armado ya que con esto se aproxima de manera eficiente al limite de la configuración establecida por la Norma y ademas resulta mucho mas óptima que otros métodos en el diseño en mención.
- Los resultados elegidos como distribucion final son la generación 26, individuo 6 en dirección x-x (tabla 4.20) La generación 30 individuo 4 (tabla 4.23) en dirección y-y, obteniendo una deriva máxima de 0.0043 al limite de la configuración permisible que exige según Hazus 99 Hazards-United States la estructura se clasificó de tipo C1H, y la deriva para un daño moderado.
- Por ultimo se puede concluir qu el algoritmo genético propuesto a mostrado un comportamiento eficiente, obteniendo resultados aceptables a un 73.34% en dirección x-x, 76.99% en dirección y-y, de convergencia, estos resultados se pueden mejorar con mas generaciones teniendo poblaciones con altas calificaciones al principio y con la ayuda del elitismo los resultados podemos obtener mucho mas óptimas.

5.2. Recomendaciones

- Los diseños de edificaciones es parte de las habilidades y experiencias de cada diseñador que puede tomar complejidades de una estructura o no, las técnicas empleadas o alternativas de diseño son parte de la realidad existente que exige de una forma racional y subjetiva, como la optimización estructural, los métodos Metaheurísticos con la aplicación de Algoritmos genéticos (AG), como procedimiento de búsqueda de soluciones que son muy eficientes para obtener soluciones extremas para satisfacer el diseño esperado.
- Para el uso de disipadores de energía es recomendable en edificaciones altos, básicamente porque los sistemas de disipación son más efectivos en edificios flexibles que en edificios rígidos, diseñar edificios con este tipo de sistemas de protección para un comportamiento elástico lineal como plantean el ASCE/SEI 7,
- Se debe colocar los amortiguadores fluido viscosos en las zonas alejadas al centro de masa, ya que de esta manera los dispositivos trabajaran en la zonas de máximas velocidades logrando mayor efectividad.
- Es necesario que en los códigos actuales se incluya la respuesta máxima y aceleraciones para un riesgo de colapso estructural. implementar en la norma códigos para análisis por desempeño ya que en la actualidad se utiliza codigos americanas que no son prescritos a nuestro realidad de nuestro país.
- Utilizar como mínimo siete registros sísmicos y que los datos del sismo se hayan tomado en los suelos que reflejan la realidad sobre la cual se proyecta la edificación caso contrario simular registros sísmicos tal como indica el reglamento peruana E.30 en su capitulo de diseño sismorresistente, utilizando software especializados para completar acerelogramas sinteticos,

- Se recomienda realizar el análisis sísmico con la interacción suelo-estructura, lo cual describe el performance real de la edificación.
- Se recomienda una programación paralelo de los algoritmos modo explicito la mayor parte posible del algoritmo para realizar procesos paralelos en GPU. Y por ultimo se recomienda determinar los parámetros del funcionamientos a base de estudios incrementar tamaño de población para mejores desarrollos.

Referencia Bibliográfica

- ASCE [2010], Minimum Design Loads for Buildings and Others Structures (ASCE/SEI 7-10), American Society of Civil Engineers.
- [2] ATC-40, "Seismic Evaluation and Retrofit of Concret Buildings". Seismic Safety Comission. California. 1996.
- [3] Bathe, K. J. and Wilson, E. L. 1976. Numerical Methods in Finite Element Analysis. Englewood Cliffs, NJ: Prentice-Hall, Inc.
- [4] Brambila Neri, D. (2012). Diseño de edificios con distribución óptima de amortiguadores viscosos no lineales, Tesis de Maestría, Posgrado de Ingeniería, UNAM.
- [5] Catal, H.H. 2002. Matrix Methods in Structural and Dynamic Analysis.Izmir, Turkey: Department of Civil Engineering, Dokuz Eylul University.
- [6] Carlos A. Cruz Corona. Estrategias coordinadas paralelas basadas en softcomputing para la solución de problemas de optimización, Tesis Doctoral, Universidad de Granada
- [7] Carlos M. et al (2014). ¿Distribucion óptima de amortiguadores viscosos e histeréticos en estructuras bajo excitaciones sísmicas?.
- [8] Cheng, F. (2000). Matrix Analysis of Structural Dynamics. Boca Raton: CRC Press.
- [9] Cheng, F., Jiang, H. and Lou, K. [2008], ¿Smart Structures? Innovative Systems for Seismic Response Control, Taylor & Francis Group, Boca Raton, Florida, ISBN 978-0-8493-8532-2

- [10] Chopra, A. K., and McKenna, F. (2016). ¿Modeling viscous damping in nonlinear response history analysis of buildings for earthquake excitation.? Earthquake Eng. Struct. Dyn., 45(2), 193211.
- [11] Chopra, A.K. (2012) Dynamics of structures, 4th edn. Prentice Hall, New Jersey.
- [12] CISMID (2017) Generación de acelerogramas sintéticos en convenio con Sencico. http://www.sencico.gob.pe/gin/investigacion.html
- [13] Constantinou M.C., Symans M.D., Tsopelas D. y Taylor D.P. (2012) Fluid Viscous Dampers in Applications and Seismic Energy Dissipation and Seismic Isolation?.
- [14] CSI Computer and Structure, Inc. 2016 ¿ETABS Manual?
- [15] Dall' Asta A, Scozzese F, Ragni L, Tubaldi E (2017) Effect of the damper property variability on the seismic reliability of systems equipped with viscous dampers. Bull Earthq Eng. doi:10.1007/s10518-017-0169-8.
- [16] Deb, K. and Kalyanmoy, D. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Inc., New York, NY, USA.
- [17] Edward L.Wilson, "Three-Dimensional Static and Dynamic Analysis of Structures", by Computers and Structures, Berkeley, California, USA, 2002.
- [18] FEMA 273 (Oct. 1997), "NEHRP Guidelines for the seismic rehabilitation of buildings", Federal Emergency Management Agency, Washington, D.C.
- [19] Gidaris I, Taflanidis AA (2015): Performance assessment and optimization of fluid viscous dampers through life-cycle cost criteria and comparison to alternative design approaches, Bulletin of Earthquake Engineering,13(4), 1003-1028.

- [20] Goldberg D.E. ¿Genetic Algorithms in Search, Optimization, and Machine Learning?. Editorial Addison Wesley Longman, Inc, 1989.
- [21] Hadi, M., Uz, M. (2018). Earthquake Resistant Design of Buildings. Boca Raton: CRC Press. Liang, Z., Lee, G., Dargush, G., Song, J. (2012). Structural Damping. Boca Raton: CRC Press.
- [22] Hans M. Hilber, Thomas J. R. Hughes and Robert L. Taylor, "Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics", Earthquake Engineering and Structual Dynamics, Vol. 5, 283-292 (1977).
- [23] Holland, J.H. (1975). Adaptation in natural, and artificial system: an introductory analysis with applications to biology, control, and artificial intelligence. U. Michigan Press.
- [24] Jasbir singh A.(2017). Introduction to Optimum Design. Editorial Elsevier Inc.
- [25] Kuri A. y Galaviz J. ¿Algoritmos Genéticos?. Editorial IPN, 2002.
- [26] Koh, C., Perry, M., Frangopol, D. M. (Ed.). (2010). Structural Identification and Damage Detection using Genetic Algorithms. London: CRC Press.
- [27] Lavan, O (2015): Optimal Design of Viscous Dampers and Their Supporting Members for the Seismic Retrofitting of 3D Irregular Frame Structures. Journal of Structural Engineering.
- [28] Lavan, O. and Dargush, G.F. 2009. Multi-objective evolutionary seismic design with passive energy dissipation systems. Journal of Earthquake Engineering, 13(6): 7581790.
- [29] Liu M., Burns S.A. y Wen Y.K. (2003). ¿Optimal seismic design of steel frame buildings based on life cycle cost considerations?. Earthquake Engineering and Structural Dynamics, Vol 32, pags 1313-1332.

- [30] López D. (2001) ¿A Simple Method for the Design of Optimal Damper Configurations in MDOF Structures?. Earthqueke Spectra, Vol 17, No. 3, pags 387-398.
- [31] María P. (2012). ¿Optimización del diseño y construcción de edificios metálicos en base de algoritmos genéticos?
- [32] Meirovitch L (1980) Computational Methods in Structural Dynamics, Sijthoff and Nordhoff, The Netherlands.
- [33] Michalewicz, Z. 1996. Genetic Algorithms + Data Structures = Evolution Programs: Springer, Berlin.
- [34] Orozco y Orozco, S. D. (2007). Elaboración de Pronósticos con Algoritmos Genéticos. Guatemala: Universidad de San Carlos de Guatemala.
- [35] OVIEDO, Ricardo. (2008). Dispositivos pasivos de disipación de energía para diseño sismorresistente de estructuras. (Tesis de Maestría). Lima: Universidad Nacional de Ingeniería.
- [36] Oviedo J.A. y Duque M.P. (2006) ¿Sistemas de Control de Respuesta Sísmica en Edificaciones?. Revista EIA, ISSN 1794-1237, Número 6.
- [37] PARDO, Juan Pablo. (2007). Control de la respuesta dinámica de estructuras mediante el uso de disipadores de energía de fluido viscoso.
- [38] Pollini. N, Lavan.O & Amir. O,(2015): Towards minimum-cost optimization of viscous fluid dampers for seismic retrofitting. Bulletin of Earthquake Engineering, 14(3). 971-998
- [39] Reglamento Nacional de Edificaciones (E-20, E-30, E-60)
- [40] SEAOC, Vision 2000: Performance based seismic engineering of buildings, San Francisco, April, 1995.
- [41] Stephen J. Chapman. (2018). Fortran for Scientists and Engineers, fourth edition.Published by McGraw-Hill Education.

- [42] S.N. Sivanandam and S.N. Deepa (2008). Introduction to Genetic Algorithms. Springer Berlin Heidelberg, Berlin, Heidelberg.
- [43] Takewaki I. (1997) ¿Optimal Damper Placement for Minimum Transfer Functions?. Earthquake Engineering and Structural Dynamics, Vol 26, pag 1113-1124.
- [44] Vlacev Toledo E. (2011) Análisis No Lineal de Elementos de Concreto Armado - Ingeniería Sísmica Basada en Desempeño.
- [45] VILLARREAL Genner Y OVIEDO Ricardo (2009) Edificaciones con Disipadores de Energía. (Primera edición). Lima, Perú.
- [46] Vob, S., Martello, S., Osman, I.H., Roucairol, C., Meta-Heuristic Advances and Trends in Local Search Paradigms for Optimization, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999.
- [47] Wilber Cutimbo C. (2016) Ingeniería Sismoresistente.

Artículo científico

Se adjunta el artículo científico realizado del presente trabajo de investigación.

Universidad Nacional de Huancavelica - Ingeniería Civil (2018)

DISTRIBUCIÓN ÓPTIMA DE AMORTIGUADORES VISCOSOS NO LINEALES PARA UNA EDIFICACIÓN APORTICADA DE CONCRETO ARMADO MEDIANTE ALGORITMOS GENÉTICOS

Salvatierra Condori, Adolfo^{a.1}

Departamento de Ingeniería Civil, Universidad Nacional de Huancavelica, Facultad de Ciencias de la Ingeniería, Escuela Profesional de Ingeniería civil, Huancavelica - Perú

&

Salvatierra Condori, Ronal^{b.1}

Departamento de Ingeniería Civil, Universidad Nacional de Huancavelica, Facultad de Ciencias de la Ingeniería, Escuela Profesional de Ingeniería civil, Huancavelica - Perú

Resumen

En el presente trabajo de investigación se propone una distribución optima de amortiguadores viscosos no lineales para una edificación aporticada de concreto armado propuesta de 12 niveles con el objetivo de mejorar el desempeño frente a un evento sísmico intenso, se realiza a través de un modelo metaheurístico basado en algoritmos genéticos, el cual consiste en hacer búsquedas aleatorias en el espacio de solución señalado por las restricciones obteniendo soluciones cada vez más eficientes, para lograrlo se proponen dos parámetros de optimización, el primero basado a partir de los desplazamientos y el segundo en la disipación de energía en lo alto de la edificación. Al iniciar el análisis de la edificación sin adicionar los amortiguadores no cumplió con los requisitos mínimos exigidos por la norma E.030 de diseño sismorresistente, en consecuencia se pasó realizar incorporando amortiguador teniendo como resultado una buena distribución mostrando tener un buen desempeño en relación de los reglamentos establecidos. Los resultados obtenidos muestran una convergencia a un 73.34 % en dirección x, 76.99 % en dirección y, llegando a cumplir con el objetivo inicialmente propuesto, la deriva máxima es de 0.0043, los desplazamiento en el centro de masa para el ultimo nivel es 12.77 cm en el sentido x, 14.50 cm en el sentido y, comparando los resultados con respecto al edificio sin disipadores reduciendo en un 56.52 % en dirección X, 52.35 % en dirección Y, cumpliendo una buena distribución y uniformidad de disipación de energía dando como resultado mejor comportamiento inelastico de la estructura a grandes acciones sísmicas.

Palabras clave: Disipador Viscoso, Optimización, Metahuristico, Algoritmos geneticos (AG), Desempeño Esctrutural.

1. Introducción

El Perú se encuentra en una zona altamente sísmica, razón por la cual la amenaza de la ocurrencia de un evento sísmico es alto. Estos desastres naturales son uno de los peligros más grandes del planeta, como los de Chile (1985), EE.UU (1989,1994), Japón (1995). Indonesia (2004,2005), México (1985,2017), así como del Perú sismos (1970, 2001, 2007, etc.), afectando gravemente los elementos estructurales debido a que estos absorben la energía de entrada del sismo y los no estructurales, asi mismo ocasionando pérdidas económicas considerables, como pérdidas humanas dejando además heridos y damnificados, pero en la actualidad el desarrollo de nuevas tecnologías como sistemas de mitigación de energía como los aisladores de base y disipadores viscosos ha permitido hacerles frente y disminuir sus impactos.

En los últimos años se ha visto la necesidad y el desarrollo de metodologías de diseño sísmico basado en desempeño estructural. Siendo una de sus características en comparación con los métodos convencionales la exigencia de cierto comportamiento estructural bajo condiciones de diferentes cargas sísmicas inciertas expresadas en términos probabilísticos. Incrementándose los trabajos de investigación en nuestro pais para encontrar procedimientos y métodos efectivos para la distribución de amortiguadores viscosos en una estructura. Estos sistemas son métodos de diseño y reforza-

^{a.1}Correo electrónico: adolfsalv10@gmail.com

^{b.1}Correo electrónico: ronalscon@gmail.com

⁽Salvatierra Condori, Adolfo & Salvatierra Condori, Ronal)

Tesis para optar el título profesional de Ingeniero Civil

miento de edificaciones como sistemas de protección sísmica, que permiten aumentar el nivel de desempeño de la edificación durante un sismo intenso. para ello el presente trabajo de investigación esta centrada en desarrollar una aplicación que interactue con programa ETABS 2016 (Extended Three Dimensional Analysis of Building System), para su correcta distribución de amortiguadores y como objetivo mejore el desempeño estructural frente a sismos intensos. En la actualidad el uso las técnicas metahuristicas en la ingeniería son frecuentes y han demostrado una gran capacidad de selección del mejor elemento de un conjunto de elementos posibles de acuerdo a un criterio de selección dado. Para esto se deben emplear métodos de optimización que permitan conocer los mejores valores que puede asumir dicho conjunto de variables (Dantzig, 2010).

1.1. Planteamiento del Problema

La constante ocurrencia de sismos en nuestro territorio ha dejado enseñanzas que debemos estudiar, analizar y poder mitigar el riesgo sísmico al que están expuestas nuestras edificaciones. Asi como en las perdidas materiales y de vidas humanas han sido considerables. Los da? nos observados en los terremotos ocurridos durante los últimos 10 a? nos en Ica, Nazca, Tacna y Moquegua han mostrado la elevada vulnerabilidad sísmica que presenta nuestros edificios.

A base de experiencia de los últimos años en que se ha podido registrar con mayor extensión los movimientos sísmicos, se ha observado que tanto las aceleraciones como las deformaciones que se pueden desarrollar durante un sismo severo e incluso moderado son muy altas, ademas de las incertidumbres en la determinación de las solicitaciones y capacidades de la estructura. La estructura esta estrechamente ligado a su capacidad de disipar energía y la disipación se presenta en la vigas y columnas en las que se forman rotulas plásticas. Sin embargo la formación de rotulas plásticas implica un alto nivel de daños.

A nivel local nuestro territorio se encuentra en una zona de alta peligrosidad sísmica y la región de departamento de Huancavelica esta inmerso dentro de la zona de alta peligrosidad sísmica como la Provincia de Castrovirreyna y Huaytara por la cercanía a la placa de Nazca y encontrarse en zona 4, según la norma E.30 de diseño de sismorresistente del Reglamento Nacional de Edificaciones (RNE). Por ello se plantea en el presente trabajo de investigación el empleo del uso de sistemas de protección sísmica con una correcta distribucion de amortiguadores viscosos no lineales mediante el uso de algoritmos genéticos en el diseño de una edificación propuesta y permitir aumento del nivel de desempeño de la edificación durante un sismo.

2. Sistemas de Protección

Los sistemas de protección sísmica, actualmente, son procedimientos de diseño alternativo, los cuales pueden tomar la forma de sistemas de aislamiento sísmico o dispositivos suplementarios de disipación de energía que, frente a eventos sísmicos, proporcionan y aseguran el comportamiento estructural dentro del rango elástico.

El diseño sismorresistente por el Reglamento Nacional de Edificaciones E-030 orienta sus principios en que la capacidad de las estructuras para disipar la energía entregada por el sismo se da por medio de las deformaciones elásticas e inelásticas las que ocasionan un daño controlado de la estructura.

2.1. Sistemas de Disipación de Energía

Los sistemas de disipasión de energía, son especialmente dispositivos diseñados para disipar cantidades grandes de energía.

Los sistemas de disipación de energía más comunes son los amortiguadores viscosos (la fuerza es proporcional a la velocidad de deformación), el amortiguador histerético (la fuerza es proporcional al desplazamiento), y el amortiguador visco-elástico donde la disipación de la energía es a través de la deformación dinamica de materiales viscosos. Los sistemas de disipación pasiva de energía, actúan como sumideros de energía y absorben una buena parte de la misma a fin de disminuir la energía disponible para deformar los demás elementos estructurales.

$$E_K(t) + E_D(t) + E_S(t) + E_H(t) = E_I(t)$$
(1)

Donde:

 E_K : Energía cinética de la estructura E_D : Energía disipada por amortiguamiento E_S : Energía de deformación elástica E_H : Energía de deformación inelástica

 E_I : Energía total de entrada

La suma de la energía de deformación elástica y la inelástica corresponde al trabajo de la fuerza restitutiva.

En la Figura 2.1 y 2.1, se puede apreciar la influencia de la incorporación de dispositivos disipadores de energía en la reducción de la energía histerética disipada en la estructura en forma de daño estructural.

Figura 1: Estructura sin disipadores

Figura 2: Estructuras con disipadores de energia

3. Disipador de energía fluido viscoso

Los disipadores de fluido viscoso tienen la propiedad de reducir simultáneamente los esfuerzos y las deflexiones de la estructura [28]. Esto es debido a que los disipadores de fluido varían su fuerza solamente con la velocidad, la cual provee una respuesta que es inherentemente fuera de fase con los esfuerzos debido a la flexibilidad de la estructura.

Figura 3: Esquema de un amortiguador viscoso (Soong - Dargust, 1997)

El funcionamiento del disipador fluido viscoso es simple: durante un terremoto, se transmite la fuerza generada por la aceleración impuesta al amortiguador que regula el paso del fluido comprimido a través de los agujeros pequeños. La energía sísmica es disipado, tan rápido como los líquidos a través de los agujeros.

La fuerza generada en cada amortiguador viscoso es caracterizada por la expresión siguiente:

$$f_d = c_d \cdot \operatorname{sgn}(v_d) |v_d|^{\alpha} \tag{2}$$

Donde:

 f_d : fuerza del disipador.

C_d : constante de amortiguamiento.

sgn: funcion signo.

 v_d : velocidad relativa en los extremos del dispositivo.

 α : exponente de no linealidad, el cual se determina por las características de la cabeza del pistón. El Coeficiente de amortiguamiento C_d : es la propiedad principal del disipador fluido viscoso, se puede considerar constante en cada uno de los dispositivos; pero su valor puede ser mayor en los niveles inferiores de la estructura porque depende del peso, y porque en los primeros pisos se tiene una mayor masa participativa. La fuerza del disipador varía sólo con la velocidad. Para una velocidad dada la fuerza será la misma en cualquier punto del dispositivo.

4. Método de análisis

Se debe realizarse un análisis dinámico no lineal. Es un método de cálculo muy poderoso, pero que requiere la definición con mayor precisión de las propiedades de los materiales y los elementos estructurales, y que a su vez exige un gran volumen de cálculo numérico11.

Los disipadores fluido viscosos se basan en el modelo Viscoelástico de Maxwell, formado por un resorte en serie con un amortiguador como se muestra en la (figura 4).

Figura 4: Modelo Viscoelástico de Maxwell, [adaptado (CSI)].

5. Estudio y Optimización de control de Disipadores Pasivos

La incorporación de amortiguadores como sistema de protección, es capaz de disipar la energía proveniente de un sismo, esto mejora sustancialmente el desempeño estructural [??]. Sin embargo, para lograr sistemas de disipación de energía efectivos y eficientes, se hace necesario optimizar su cantidad, capacidad y ubicación dentro de la estructura.

Sin embargo, el costo aumenta con la fuerza que se instala, la fuerza asociada con cada disipador varía linealmente con el coeficiente α del amortiguador, y el valor de C es supuesto para una buena distribución optima de los disipadores.

6. Algoritmos Genéticos

Los algoritmos genéticos son técnicas de programación que intentan replicar el comportamiento biológico, es decir, son algoritmos de búsqueda basados en la mecánica de la selección natural y de la genética. Estos algoritmos utilizan la información histórica para encontrar nuevas rutas de búsqueda de una solución óptima del problema a resolver.

Los algoritmos genéticos (denominados originalmente planes reproductivos genéticos) fueron desarrollados por John H. Holland a principios de los 1960s, motivado por resolver problemas de aprendizaje de máquina.

Proceso de los Algoritmos Genéticos

 Inicialización: la población inicial de candidatos es generada aleatoriamente en el espacio de búsqueda.

- **Evaluación:** una vez iniciada la población o una población descendiente, los valores de aptitud de las soluciones candidatas son evaluadas.
- Selección: la idea general de este paso es la preferencia de las mejores soluciones de las peores, haciendo uso de procedimientos de selección, como la selección por ruleta, selección elitista, selección escalada, selección por torneo, por mencionar algunos.
- Recombinación: el procedimiento combina partes de dos o más soluciones aparentes para crear nuevas soluciones, posiblemente mejores.
- Mutación: mientras la recombinación opera con 2 o más cromosomas parentales, la mutación localmente, pero aleatoriamente altera una solución.
- Reemplazo: la población descendiente creada por la selección, recombinación y mutación reemplaza a la población originalmente creada. Existen varias técnicas de reemplazo en los algoritmos genéticos como el reemplazo elitista, por estado estacionario o proporcional a la aptitud.
- Se repiten los pasos del 2 al 6, hasta encontrar la condición final deseada.

El procedimiento generalizado de un algoritmo genético se representa en la siguiente figura 5.

Figura 5: Diagrama de flujo de un algoritmo genético básico

7. Algoritmo Genético Propuesto Para el Diseño de una Edificación con Amortiguadores

Se plantea la adaptación de los AG para la distribución optima de amortiguadores no lineales, que a su vez, serán

comparados con un modelo inicial de la estructura que se desee analizar, determinando en un inicio sus propiedades, características de la edificación, lo cual nos permitirán observar la convergencia del Algoritmo genético.

Para diseñar por sismo es necesario revisar el comportamiento del edificio en las dos direcciones ortogonales al plano (X y Y), aquí se realizó el análisis en ambas direcciones. Para ello se propuso 2 criterios de optimización, el primero ligado al deriva de entrepiso según el Reglamento Nacional de Edificación (E-030), y el segundo a la variación de la disipación de energía en la estructura.

$$DDE_{i} = \frac{Drift_{i}}{D_{obj}} \times \frac{100}{n^{\circ}pisos} ; Drift_{i} \leq D_{obj}$$

$$DDE_{i} = \frac{1,5D_{obj} - Drift_{i}}{0,5D_{obj}} \times \frac{90}{n^{\circ}pisos} ; 1,5D_{obj} \geq Drift_{i} > D_{obj}$$

$$DDE_{i} = 0 ; Drift_{i} > 1,5D_{obj}$$

$$DDE = \sum_{i=1}^{n^{\circ}pisos} DDE_{i}$$

$$(3)$$

Donde Drift_i es la deriva del entrepiso i de la edificación, DDE_i es la deriva de entrepiso Local *i*, DDE es la suma global de todos los derivas de la edificación, Dobi es la deriva objetivo. En el criterio de optimización que se plantea no se tratará de reducir DDE_i al mínimo, se ajustara cercano al límite establecido por los reglamentos, como E.30 Norma Peruana o para análisis por desempeño con la Norma Americana, para este ultimo reglamento en mención la deriva máxima es de 0,0043. Si la deriva va decreciendo se aleja del límite como también su calificación, la asignación de su calificación es de 8,3333 cuando se encuentra en el límite 0.0043, y una calificación de 0 cuando las derivas son mayores o igual a 0.0064. Para dispensar a los individuos que presentan derivas dentro de los límites del reglamento, al individuo se castiga multiplicando por un factor de 7,5, sus calificaciones de los resultados de derivas mayores de limite del reglamento y para derivas mayores de 0,0043 se aplica el mismo criterio explicado. Otro criterio tomado fue la variación de la disipación de energía (VDE) en la estructura, que varia entre 0.7 y 1.0. El VDE funciona como un factor de castigo cuando se carece de regularidad de disipación de energía en la altura del edificio, se emplea la siguiente ecuación:

$$VDE_{i} = D_{rel_{i}} \times F_{D_{i}}$$

$$L = \frac{\sum_{i=1}^{12} VDE_{i}}{12}$$

$$E_{i} = 0,7 + (0,25 - \left|1 - \frac{VDE_{i}}{L}\right|) \times \frac{0,3}{0,25} \quad Si$$

$$0,75 \times L \le VDE_{i} \le 1,25 \times L$$

$$E_{i} = 0,7$$

$$VDE = \frac{\sum_{i=1}^{12} E_{i}}{12}$$
(4)

١

Donde VDE_i es el variación de la disipación de energía local del entrepiso i, D_{rel_i} es el desplazamiento relativo máximo de los extremos del amortiguador i, L es el promedio de los índices de energía local de entrepiso, E_i es la calificación del entrepiso *i* (varía entre 0.7 y 1), e VDE variación de la disipación de energía Donde la función objetivo sera

7.0.1. Variables de Diseño

Se pueden definir las variables de diseño como los parámetros que controlan las derivas de la estructura a optimizar, una variables de diseño seria los coeficientes de amortiguamiento C_d , variacion de energía. Ver la ecuación 4 y 3

7.0.2. Función Objetivo

Una vez formulado y delimitado el problema de interés, en el siguiente paso se elegi los criterios dados con el que se evalúa el diseño, de forma que podamos identificar cual es el mejor diseño según los variables intervinientes que previamente se ha explicado. El producto de estos variables de diseño es la funcion objetivo.

Maximizar
$$\left(\sum_{i=1}^{12} \text{CDE}_i \times \frac{\sum_{i=1}^{12} E_i}{12}\right)$$
 (5)

7.0.3. Restricciones

Son conocidos a los límites, que toman los valores de las variables de diseño. Por lo tanto, las restricciones son condiciones que debe de cumplir el diseño para que pueda ser considerado como válido, planteándose en función de las variables, a las que se les exige tener un valor o mantenerse dentro de unos límites. Ver la ecuación 4 y 3.

Las principales características del algoritmo genético propuesto para resolver el problema son las siguientes:

- Se Codifica los cromosomas (binario).
- Se realiza la modelación estructural en el programa ETABS 2016 para cada individuo.
- Se utiliza el criterio AG simple con preferencia en los objetivos.
- Los mejores individuos se guardan en archivos con formato (.txt) para su posterior análisis en el ETABS.
- La implementación esta escrito en el lenguaje Fortran 95.

A continuación se muestra el diagrama de flujo en la siguiente figura 6.

Figura 6: Diagrama de flujo de un algoritmo genético básico

8. Estudio Experimental

8.1. Sistema estructural

El edificio analizado esta compuesta por 12 niveles destinado para uso de oficinas. Es una edificación aporticada, siendo la altura del primer nivel de 4,50m y los niveles posteriores de 3,50m.

La edificación fue analizada como una estructura tridimensional y la adición de los disipadores fue en ambas direcciones.

8.2. Sistema de Amortiguación Propuesto

Después de construidos los modelos matemáticos se procedió a determinar la mejor ubicación de los disipadores, así como la cantidad adecuada de los dispositivos. El sistema de Amortiguación se instaló en la configuración diagonal y en ambos lados de la estructura (cuatro dispositivos de amortiguación por piso). Los dispositivos de amortiguación, mostrados (Ver Fig.7 y Fig.8), son amortiguadores viscosos no lineales con una constante de amortiguación C_d variable en toda la altura.

Figura 7: Disipadores en la dirección x-x

Figura 8: Disipadores en la dirección y-y

9. Análisis Sísmico de la Edificación

De acuerdo a los procedimientos señalados y tomando en cuenta las características de los materiales y cargas que actúan sobre la estructura que influyen en el comportamiento de la misma ante las solicitaciones sísmicas, se muestra a continuación el análisis realizado.

9.1. Declaración de los parámetros que intervienen en la optimización

Después de realizar el análisis, se seleccionaron los variables y componentes del problema de optimización para el modelo estructural analizado. A continuación, se describirá a detalle la manera en que se implementó cada uno de los procesos que describen a los Algoritmos Genéticos.

Los parámetros empleados en el algoritmo de optimización son: Población Inicial (15 individuos) por generación, probabilidad de cruzamiento (65 %), probabilidad de mutación (3 %), elitismo (90 %,) número máximo de generaciones (30).

Se realiza la búsqueda hasta encontrar la mejor solución del frente de pareto, donde los coeficientes C_d del disipador fluido viscosos serán variables en la altura del edificio y el valor de $\alpha = 0,6$ constante. Se muestra la propuesta presentado en la figura

10. Resultados

Se realizaron 30 generaciones, para encontrar algunas posibles soluciones aceptables al frente de pareto, encontrando entre ellas candidatos mas de una solución aceptable, los mejores resultados se logran en mayor numero de ge- neraciones a analizar, pero como el proceso que tarda en completarse una generación se optó por no seguir teniendo en cuenta para nuestro caso, se obtuvieron candidatos de solución.

Figura 9: criterios de optimización

A continuación se muestran las derivas de entrepiso así como regularidad de disipación de energía a lo alto del edificio, para cada individuo perteneciente al función objetivo.

Figura 10: Generacion gene_22 Indiv_13, direccion x

Figura 11: Generacion gene_25 Indiv_15, direccion x

Figura 12: Generacion gene_26 Indiv_6, direccion x

Los resultados para esta direccion Y-Y se analiza con los mismos pasos y parámetros considerados en la direccion X-X. de la misma forma se realiza- ron 30 generaciones, para tener candidatos posibles de solución

Figura 13: Generacion gene_15 Indiv_5, direccion y

Figura 14: Generacion gene_28 Indiv_15, direccion x

Figura 15: Generacion gene_30 Indiv_4, direccion x

10.1. Balance Energético

En la figura 17 se puede apreciar que la energía de entrada es absorbida un porcentaje menor por la estructura, y en porcentaje mayor por los disipadores de energía (disipadores fluido viscosos), la energía de disipación es prácticamente el 83 %, este porcentaje es muy significativo es por ello donde se aprecia la disminución de fuerzas en los elementos estructurales (columnas y vigas) y también los desplazamientos en los diferentes niveles de la estructura.

Figura 16: Distribución de energía sin disipadores

Figura 17: Distribución de energía con disipadores

11. Conclusiones

- El uso de algoritmos genéticos como procedimiento de búsqueda de soluciones es muy eficiente y robusto ya que para una generación de 30, los resultados son alcanzados a los limites propuesto de nuestro función objetivo.
- En los análisis de los escenarios, se obtuvieron los mejores resultados debido al elitismo usado ya que en cada generación siempre los mejores individuos permanecerán,
- Se opto por generar solo 30 iteraciones ya que el tiempo de ejecución para cada individuo es un promedio 12 minutos, si para una generacion que conforman 15 individuos, y para 30 generaciones conformaría 450 individuos sumando un total de 5400 min de ejecución que equivale a 90 horas, con procesador Inter core i7,

de 3 GHz, el análisis se realiza con tiempo historia no lineal, 3 registros sísmicos con sus dos componentes (EO-NS), la programación es en paralelo puesto que el análisis se hizo en las dos direcciones (X y Y), dando un total de tiempo de ejecución en paralelo de 90 horas, aproximadamente 3,75 días.

- En la estructura estudiada, los resultados mostraron que la distribución C_d de los dispositivos con la metodología propuesta, es más eficiente que una distribución C_d uniforme, dado que, con menor capacidad de amortiguamiento total incorporado, se logra el nivel de desempeño deseado.
- De acuerdo a los resultados del análisis se logro una deriva máxima de 0.0043 con una variación de 50 % con respecto al análisis de tiempo historia que es de 0.0086, los desplazamientos en centro de masa, para la edificación sin disipadores tiene un desplazamiento de 29,37 cm en el sentido x-x, 30,43 cm en el sentido y-y, para la edificación con disipadores tiene un desplazamiento de 12.77 cm en el sentido x-x, 14.50cm en el sentido y-y, comparando los resultados notablemente se reduce en un 56.52 % en dirección X-X, 52.35 % en dirección Y-Y, también se observa una disminución de la fuerza axial en las columnas, en centro de masas los velocidades máximas y mínimas reducen al igual que las aceleraciones finalmente el periodo de la estructura es de 3.41 s se mantiene al adicionar los disipadores viscosos no lineales debido a que estos no alteran la rigidez de la estructura.
- Por ultimo se puede concluir qu el algoritmo genético propuesto ha mostrado un comportamiento eficiente, obteniendo resultados aceptables a un 73.34 % en dirección x-x, 68.10 % en dirección y-y, de convergencia, estos resultados se pueden mejorar con mas generaciones teniendo poblaciones con altas calificaciones al principio y con la ayuda del elitismo se pueden a tener resultados mucho mas optimas.

Referencia Bibliográfica

- ASCE [2010], Minimum Design Loads for Buildings and Others Structures (ASCE/SEI 7-10), American Society of Civil Engineers.
- [2] ATC-40, "Seismic Evaluation and Retrofit of Concret Buildings". Seismic Safety Comission. California. 1996.
- [3] Bathe, K. J. and Wilson, E. L. 1976. Numerical Methods in Finite Element Analysis. Englewood Cliffs, NJ: Prentice-Hall, Inc.
- [4] Brambila Neri, D. (2012). Diseño de edificios con distribución óptima de amortiguadores viscosos no lineales, Tesis de Maestría, Posgrado de Ingeniería, UNAM.

- [5] Catal, H.H. 2002. Matrix Methods in Structural and Dynamic Analysis. Izmir, Turkey: Department of Civil Engineering, Dokuz Eylul University.
- [6] Carlos M. et al (2014). ¿Distribucion óptima de amortiguadores viscosos e histeréticos en estructuras bajo excitaciones sísmicas?.
- [7] Cheng, F. (2000). Matrix Analysis of Structural Dynamics. Boca Raton: CRC Press.
- [8] Cheng, F., Jiang, H. and Lou, K. [2008], ¿Smart Structures? Innovative Systems for Seismic Response Control, Taylor & Francis Group, Boca Raton, Florida, ISBN 978-0-8493-8532-2
- [9] Chopra, A.K. (2012) Dynamics of structures, 4th edn. Prentice Hall, New Jersey.
- [10] CISMID (2017) Generación de acelerogramas sintéticos en convenio con Sencico. http://www.sencico.gob.pe/gin/ investigacion.html
- [11] CSI Computer and Structure, Inc. 2016 ¿ETABS Manual?
- [12] Dall' Asta A, Scozzese F, Ragni L, Tubaldi E (2017) Effect of the damper property variability on the seismic reliability of systems equipped with viscous dampers. Bull Earthq Eng. doi:10.1007/s10518-017-0169-8.
- [13] Deb, K. and Kalyanmoy, D. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Inc., New York, NY, USA.
- [14] Edward L.Wilson, "Three-Dimensional Static and Dynamic Analysis of Structures", by Computers and Structures, Berkeley, California, USA, 2002.
- [15] FEMA 273 (Oct. 1997), "NEHRP Guidelines for the seismic rehabilitation of buildings", Federal Emergency Management Agency, Washington, D.C.
- [16] Goldberg D.E. ¿Genetic Algorithms in Search, Optimization, and Machine Learning?. Editorial Addison Wesley Longman, Inc, 1989.
- [17] Hadi, M., Uz, M. (2018). Earthquake Resistant Design of Buildings. Boca Raton: CRC Press. Liang, Z., Lee, G., Dargush, G., Song, J. (2012). Structural Damping. Boca Raton: CRC Press.
- [18] Holland, J.H. (1975). Adaptation in natural, and artificial system: an introductory analysis with applications to biology, control, and artificial intelligence. U. Michigan Press.
- [19] Koh, C., Perry, M., Frangopol, D. M. (Ed.). (2010). Structural Identification and Damage Detection using Genetic Algorithms. London: CRC Press.

- [20] Lavan, O (2015): Optimal Design of Viscous Dampers and Their Supporting Members for the Seismic Retrofitting of 3D Irregular Frame Structures. Journal of Structural Engineering.
- [21] Meirovitch L (1980) Computational Methods in Structural Dynamics, Sijthoff and Nordhoff, The Netherlands.
- [22] Michalewicz, Z. 1996. Genetic Algorithms + Data Structures = Evolution Programs: Springer, Berlin.
- [23] Pollini. N, Lavan.O & Amir. O,(2015): Towards minimum-cost optimization of viscous fluid dampers for seismic retrofitting. Bulletin of Earthquake Engineering, 14(3). 971-998
- [24] Ricardo, O (2008). Dispositivos pasivos de disipación de energía para diseño sismorresistente de estructuras.
- [25] Reglamento Nacional de Edificaciones (E-20, E-30, E-60)
- [26] SEAOC, Vision 2000: Performance based seismic engineering of buildings, San Francisco, April, 1995.
- [27] S.N. Sivanandam and S.N. Deepa (2008). Introduction to Genetic Algorithms. Springer Berlin Heidelberg, Berlin, Heidelberg.
- [28] VILLARREAL Genner Y OVIEDO Ricardo (2009) Edificaciones con Disipadores de Energía. (Primera edición). Lima, Perú.

Anexos A

Modelamiento de la Edificación Aporticada en el Programa ETABS 2016.

A.1. Interfaz del Programa

Figura A.1: Interface del programa ETABS 2016.

A.2. Inicializando nuevo Modelo

Primero Seleccionamos las unidades en las que se va a trabajar, y el modelo.

Grid Dimensions (Plan)		Story Dimensions		
O Uniform Grid Spacing		O Simple Story Data		
Number of Grid Lines in X Direction		Number of Stories		
Number of Grid Lines in Y Direction		Typical Story Height		
Spacing of Grids in X Direction		Bottom Story Height	Γ	
Spacing of Grids in Y Direction				
Specify Grid Labeling Options	Grid Labels			
Custom Grid Spacing		Custom Story Data		
Specify Data for Grid Lines	Edit Grid Data	Specify Custom Story Di	ata I	Edit Story Data
Add Structural Objects	H	Flat Slab with Perimeter Beam	Waffle Slab	Two Way or Ribbed Slab

Figura A.2: Plantillas predefinidas en el programa

luego digitamos los valores correspondientes para ubicar los ejes en función de las longitudes de los tramos y presione Ok .

	e		Story F	Range Option —			Click to Modif	fy/Show:				
G1				Default				Reference Points				
				User Specified				Reference Planes			00	000
System Origin				Top Story						0-		
Global X	0	m					Options					
Global Y	0	m		Bottom Story			Bubble Siz	ze 1250	mm	0-	_	_
	0	dea								0-		_
Rotation Rectangular G Display X Grid Data	s rid Data as Ordinates X Ordinate (m)		O	Display Grid Dat	a as Sp	vacing	Grid Color Y Grid Data	Y Ordinate (m)	Quick	Start New Rectan	ngular G	Srids
Rotation Rectangular G	s rid Data as Ordinates X Ordinate (m)		(Visible	Display Grid Data	a as Sp	Nacing	Grid Color Y Grid Data Grid ID	Y Ordinate (m)	Quick Visible	Start New Rectan Bubble Loc	ngular C	Grids
Rotation Rectangular G O Display X Grid Data Grid A	s rid Data as Ordinates X Ordinate (m) 0	V	() Visible Yes	Display Grid Dat Bubble Loc End	a as Sp	Add	Grid Color Y Grid Data Grid ID 1	Y Ordinate (m) 0	Quick Visible Yes	Start New Rectan Bubble Loc Start	ngular C	Grids Add
Rotation Rectangular G Display X Grid Data Grid A B	s rid Data as Ordinates X Ordinate (m) 0 7		Visible Yes Yes	Display Grid Dat	a as Sp	Add Delete	Grid Color Y Grid Data Grid ID 1 2	Y Ordinate (m) 0 6	Quick Visible Yes Yes	Start New Rectan Bubble Loc Start Start	ngular C	Grids Add
Rectangular G Display X Grid Data Grid A B C C	s rid Data as Ordinates X Ordinate (m) 0 7 14		Visible Yes Yes Yes	Display Grid Dat. Bubble Loc End End End	a as Sp	Add Delete	Grid Color Y Grid Data Grid ID 1 2 3	Y Ordinate (m) 0 6 12	Quick Visible Yes Yes	Start New Rectan Bubble Loc Start Start Start	ngular C	Grids Add Delete
Rotation Rectangular G Display X Grid Data Grid B C D	x Ordinates X Ordinate (m) 0 7 14 21 20		Visible Yes Yes Yes Yes	Display Grid Dat	a as Sp	Add Delete	Grid Color Y Grid Data Grid ID 1 2 3 4 5	Y Ordinate (m) 0 6 12 18	Quick Visible Yes Yes Yes Yes	Start New Rectar Bubble Loc Start Start Start Start Start	ngular C	Grids Add Delete
Rotation Rectangular G Display X Grid Data Grid B C D E	X Ordinates X Ordinate (m) 0 7 14 21 28		Visible Yes Yes Yes Yes Yes	Display Grid Dat	a as Sp	Add Delete Sort	Grid Color Y Grid Data Grid ID 2 3 4 5 5	Y Ordinate (m) 0 6 12 18 24	Quick Visible Yes Yes Yes Yes Yes	Start New Rectan Bubble Loc Start Start Start Start Start Start	ngular C	Grids Add Delet

Figura A.3: Sistema de Grillas en las Coordenadas cartesianas

	Story	Height	Elevation	Master Story	Similar To	Splice Story	Splice Height	Story Color
F.	Story12	3.5	43	Yes	None	No	0	
	Story11	3.5	39.5	No	Story12	No	0	
	Story10	3.5	36	No	Story12	No	0	
	Story9	3.5	32.5	No	Story 12	No	0	
	Story8	3.5	29	No	Story 12	No	0	
	Story7	3.5	25.5	No	Story12	No	0	
	Story6	3.5	22	No	Story12	No	0	
	Story5	3.5	18.5	No	Story12	No	0	
	Story4	3.5	15	No	Story12	No	0	
	Story3	3.5	11.5	No	Story12	No	0	
	Story2	3.5	8	No	Story12	No	0	
	Story1	4.5	4.5	No	Story 12	No	0	
	Base		0					
Note: Rig	ht Click on Grid for Optio	ns	OK	Refresh View	Cancel			

Figura A.4: Altura de la edificación

la cual nos quedara dos ventanas principales: una en tres dimensiones y la otra en el plano XZ como en la siguiente figura A.5.

Figura A.5: Modelo del edificio

En la ventana de Datos de Propiedades del Material de la Figura A.7 se colocará toda la información establecida de la edificación, luego, se aceptarán todos los datos ingresados dándole clic en el botón.

General Data					
Material Name	concreto f'c=	210kg/cm2		N D	
Material Type	Concrete		~		
Directional Symmetry Type	Isotropic		~		
Material Display Color		Change			
Material Notes	Modif	/Show Notes			
Material Weight and Mass					
Specify Weight Density	O Spe	cify Mass Density			
Weight per Unit Volume		2.4	tonf/m ³		
Mass per Unit Volume		0.244732	tonf-s²/m4		
Mechanical Property Data					
Modulus of Elasticity, E		2188197.89	tonf/m ²		
Poisson's Ratio, U		0.2			
Coefficient of Thermal Expansion	n, A	0.0000099	1/C		
Shear Modulus, G		911749.12	tonf/m ²		
Design Property Data					
Modify/Sho	ow Material Property	Design Data]		
Advanced Material Property Data					
Nonlinear Material Data		Material Damping P	roperties		
Tin	ne Dependent Prop	rties			
1					

Figura A.7: Definición de las propiedades del concreto

En la segunda opción, Frame section, del menú desplegable definir la sección de los elementos tales como: columna, viga como se ilustra en la figura A.8.

	Property Name	columna 50x50cm	
Dhar	Material		• • •
riter	National Circ Date	concreto re=210kg/cm2	
Properties	Notional Size Data	Modify/Show Notional Size	3
Find This Property	Display Color	Change	
columna 50x50cm	Notes	Modify/Show Notes	• •
columna 50x50cm columna 65x65cm	Shape		
viga 30x60cm viga 30x70cm	Section Shape	Concrete Rectangular	
	Section Property Source		
	Source: User Defined		Property Modifiers
	Section Dimensione		Modify/Show Modifiers
	Death		Currently Default
	Depth	0.5	Reinforcement
	Width	0.5 m	Modify/Show Rebar
			OK
		Show Section Properties	Cancel

A.2.2. Asignando Secciones de los Elementos al Modelo

Para lograr una mejor visualización, la estructura ha sido extruida y girada hasta obtener esta vista.

Model Explorer	<	- × 13 3-D View	
Model Duplay Tables Papots Detaining ⊡-Model (⊕ Project ⊕ Structure Layout ⊕ Propertie ⊕ Structure Objects ⊕ Structure Odject Items ⊕ Named Piots → Named Piots			

Figura A.9: Modelo Final del Edificio con Columnas y Vigas

A.2.3. Definición de Pasos Para el Análisis Dinámico Espectral

Para realizar el Análisis Dinámico Espectral primero seleccionaremos en opción Define/Function/Response Espectrum, como se ilustra en la siguiente figura A.10.

Figura A.11: Espectro de Sismo Generado en ETABS

Load Case Type Response Spectrum Notes. Exclude Objects in this Group Not Applicable Notes. Mass Source Previous (MsSrc1) Interview (MsSrc1) Loads Applied Interview (MsSrc1) Add Load Type Load Name Function 9.8067 Acceleration U1 espectral 9.8067 Other Parameters Modal Advant Other Parameters Modal Include Rigid Response Modal Combination Method CQC Include Rigid Response Earthquakee Duration, 1d Include Rigid Type Pendec + Rigid Type Directional Combination Scale Factor Modal/// Show Modal Damping Constant at 0.05 Modify/Show Diaphragm Eccentricity Øfor All Diaphragms Modify/Show
Exclude Objects in this Group Not Applicable Mass Source Previous (MsSrc1) Loads Applied Image: Construction of the sepectral of the sepctral of the sepectral of the sepectral of the sepectral of the se
Mass Source Previous (MsSrc1) Loads Applied
Loads Applied Load Type Load Name Function Scale Factor Acceleration U1 espectral 9.8067 Add Delete Advan Other Parameters Modal Load Case Modal Coller Parameters Modal Combination Method CQC Period: + Rigd Frequency, f1 Rigd Frequency, f2 Period: + Rigd Type Earthquakce Duration, td Directional Combination Scale Factor Modal Damping Constant at 0.05 Modify/Show Diaphragm Eccentricity Of or All Diaphragms Modal Damping Constant at 0.05 Diaphragm Eccentricity Of or All Diaphragms Modal Scale Factor
Load Type Load Name Function Scale Factor Acceleration U1 espectral 9.8067 Add Delete Add Other Parameters Modal Image: Construction Image: Construction Other Parameters Modal Image: Construction Image: Construction Modal Combination Method CQC Image: Construction Image: Construction Image: Include Rigid Response Rigid Frequency, f1 Image: Construction Image: Construction Directional Combination Type SRSS Image: Construction Image: Construction Image: Construction Modal Damping Construct at 0.05 Modify/Show Image: Construction Image: Construction Disphragm Eccentricity Øfor All Diaphragms Image: Construction Image: Construction Image: Construction
Acceleration U1 espectral 9.8067 Other Parameters Modal Image: Construct of the system o
Other Parameters Modal Modal Load Case Modal Modal Combination Method CQC Include Rigid Response Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type Earthquake Duration, tid Otherconstructional Combination Scale Factor Modal Damping Constant at 0.05 Modify/Show Diaphragm Eccentricity Øfor All Diaphragms Modify/Show
Other Parameters Modal Load Case Modal Modal Combination Method CQC Include Rigid Response Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type Earthquake Duration, tid Other Stats Directional Combination Type SRSS Absolute Directional Combination Scale Factor Modify/Show Modal Damping Constant at 0.05 Modify/Show Diaphragm Eccentricity Øfor All Diaphragms Modify/Show
Other Parameters Modal Modal Load Case Modal Modal Combination Method CQC Include Rigid Response Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type Earthquake Duration, tid Directional Combination Type SRSS Absolute Directional Combination Scale Factor Modify/Show Diaphragm Eccentricity Øfor All Diaphragms
Other Farameters Modal Modal Load Case Modal Modal Combination Method CQC Include Rigid Response Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type Earthquake Duration, tid Image: SRSS Directional Combination Type SRSS Absolute Directional Combination Scale Factor Modify/Show Diaphragm Eccentricity Øfor All Diaphragms Modify/Show
Modal Combination Method Image: Construction of the sponse Modal Combination Method Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type Denotionation Type SRSS Absolute Directional Combination Scale Factor Modify/Show Diaphragm Eccentricity Ofor All Diaphragms Modify/Show
Include Rigid Response Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type Desctional Combination Type SRSS Absolute Directional Combination Scale Factor Modfy/Show Modal Damping Constant at 0.05 Modfy/Show Diaphragm Eccentricity Øfor All Diaphragms Modfy/Show
Rigid Frequency, f2 Periodic + Rigid Type Earthquake Duration, td Directional Combination Type SRSS Absolute Directional Combination Scale Factor Modal Damping Constant at 0.05 Diaphragm Eccentricity Øfor All Diaphragms
Periodic + Rigid Type Earthquake Duration, Id Directional Combination Type SRSS Absolute Directional Combination Scale Factor Modal Damping Constant at 0.05 Diaphragm Eccentricity Ofor All Diaphragms
Earthquake Duration, Id Directional Combination Type SRSS Absolute Directional Combination Scale Factor Modal Damping Constant at 0.05 Diaphragm Eccentricity 0 for All Diaphragms Modify/Show
Directional Combination Type SRSS Absolute Directional Combination Scale Factor Modal Damping Constant at 0.05 Diaphragm Eccentricity Ofor All Diaphragms
Absolute Directional Combination Scale Factor Modal Damping Constant at 0.05 Modify/Show Diaphragm Eccentricity 0 for All Diaphragms Modify/Show
Modal Damping Constant at 0.05 Modfy/Show Diaphragm Eccentricity 0 for All Diaphragms Modfy/Show
Diaphragm Eccentricity Ofor All Diaphragms Modify/Show
Utor All Diaprinagins moulity Snow
100 A
Load Case Data
General
General Load Case Name Design
General Load Case Name Design Load Case Type Response Spectrum V Notes.
General Load Case Name Load Case Type Response Spectrum Kot Applicable
General Design Load Case Name Eximit Load Case Type Response Spectrum Exclude Objects in this Group Not Applicable Mass Source Previous (MaSrc1)
General Load Case Name Load Case Type Response Spectrum Kass Source Previous (MsSrc1) Loads Applied
General Load Case Name Load Case Type Exclude Objects in this Group Mass Source Previous (MsSrc1) Load Type Load Type Load Name Function Scale Factor
General Load Case Name Design Load Case Type Response Spectrum Notes. Exclude Objects in this Group Not Applicable Notes. Mass Source Previous (MsSrc1) Notes. Load Type Load Name Function Scale Factor Acceleration U2 espectral 9.8067
General Load Case Name Design Load Case Type Response Spectrum Notes. Exclude Objects in this Group Not Applicable Notes. Mass Source Previous (MaSRe1) Notes. Load Applied Load Type Load Name Function Scale Factor U2 espectral 9.8067 Add
General Load Case Name Design Load Case Type Response Spectrum Notes. Exclude Objects in this Group Not Applicable Notes. Mass Source Previous (MaSrc1) Notes. Load Applied Load Type Load Name Function Scale Factor U2 espectral 9.8067
General Load Case Name Design Load Case Type Response Spectrum Notes. Exclude Objects in this Group Not Applicable Notes. Mass Source Previous (MaSic1) Notes. Load Applied Image: Comparison of the spectral of the spe
General Load Case Name Load Case Type Response Spectrum Load Case Type Response Spectrum Not Applicable Not Applicable Load Type Load Name Function Scale Factor Add Delete Advan Other Parameters Modal Load Case Modal
General Load Case Name Design Load Case Type Response Spectrum Notes. Exclude Objects in this Group Not Applicable Notes. Mass Source Previous (MaSrc1) Notes. Load Applied
General Load Case Name Design Load Case Type Response Spectrum Notes. Exclude Objects in this Group Not Applicable Notes. Mass Source Previous (MsSrc1) Notes. Load Type Load Name Function Scale Factor Acceleration U2 espectral 9.8067 Other Parameters Modal Load Case Modal ✓ Modal Combination Method CQC ✓
General Load Case Name Design Design Load Case Type Response Spectrum Notes. Exclude Objects in this Group Not Applicable Notes. Mass Source Previous (MsSrc1) Notes. Load Type Load Name Function Scale Factor Acceleration U2 espectral 9.8067 Other Parameters Modal Modal Load Case Modal Modal Combination Method CQC Piped Frequency (1 Piped Frequency (2
General Load Case Name Design Load Case Type Response Spectrum Notes. Exclude Objects in this Group Not Applicable Notes. Mass Source Previous (MaSrc1) Notes. Loads Applied Load Name Function Scale Factor Acceleration U2 espectral 9.8067 Add Other Parameters Modal Advant Modal Load Case Modal Modal Combination Method CQC Include Rigid Response Rigid Frequency, f1 Parameters Rigid Frequency, f2
General Load Case Name Design Load Case Type Response Spectrum Notes. Exclude Objects in this Group Not Applicable Notes. Mass Source Previous (MaSrc1) Load Sape Loads Applied Load Type Load Name Function Scale Factor Add Loads Case U2 espectral 9.8067 Add Delete Other Parameters Modal Advant V Modal Load Case Modal Period: + Rigd Frequency, f1 Period: + Rigd Frequency, f2 Period: + Rigd Type Earthquakee Duration tid Earthquakee Duration tid Earthquakee Duration tid Earthquakee Duration tid
General Load Case Name Design Load Case Type Response Spectrum Notes. Exclude Objects in this Group Not Applicable Notes. Mass Source Previous (MsSrc1) Load Applied Loads Applied Exclude Objects in this Group Not Applicable Loads Applied Function Scale Factor Acceleration U2 espectral 9.8067 Other Parameters Modal Advan Other Parameters Modal ✓ Modal Load Case Modal ✓ Include Rigid Response Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type Earthquake Duration, td Enctional Combination Type
General Load Case Name Design Load Case Type Response Spectrum Notes. Exclude Objects in this Group Not Applicable Notes. Mass Source Previous (MsSrc1) Load Applied Loads Applied Load Type Load Name Function Scale Factor Add Loads Case Modal 9.8067 Add Deleter Other Parameters Modal CQC V Modal Combination Method CQC V Right Frequency. 11 Right Frequency. 12 Earthquake Duration, 1d Directional Combination Type SRSS V Absolve Bignetional Combination Type SRSS V
General Load Case Name Design Load Case Type Response Spectrum Notes. Exclude Objects in this Group Not Applicable Notes. Mass Source Previous (MsSrc1) Image: Comparison of the strength of the

Figura A.13: Definición del Caso de Carga de Sismo en la Dirección Y

Luego de haber realizado todo los procedimientos en el software se procedió con el análisis correspondiente. Hacer clik en el menú Analyze Run Analysis, para hacer correr el programa.

A.3. Análisis Tiempo - Historia

Se procederá el análisis con la misma estructura no es necesario crear otro modelo solo agregaremos los aceleraciones del sismo.

Para realizar el Análisis Tiempo - Historia se utilizaron 3 pares de registros sísmicos en ambas direcciones (EO - NS), el cual se descargo desde la página del Cismid.

II.	Section Properties	- piso 1 - Z = 4.2	(m)		
114	Spring Properties	•			
32*	Dianhragms				
	Diaphraghts				
1021	Spandrel Labels				
Ċ.	Group Definitions				
	Section Cuts	7(0) ①	7000 7000 0		
Q.	Functions				
Jx R	Generalized Displacements	Kesponse	Spectrum		
< · ·	Mars Cause	- meriso	Jry		
PA	P-Delta Ontions				
M	Modal Cases				
	Load Patterns				
× E	Shell Uniform Load Sets.				
[root]	Load Cases				
15 E D+L	Load Combinations				
+=	Auto Construction Secures (Care			
	Walking Vibrations	×			
_					
rura A.14:	Definición c	le la funció	n Tiempo) - H1st	01
sura A.14:	Definición c ry Function Definition - From Time History Functi	le la funció File on Name MOQ_EW	n Tiempo) - Hist	501
e Time H Time Histor	Definición c ry Function Definition - From Time History Functi le	le la funció	n Tiempo) - Hist	201
IITA A.14:	Definición c ry Function Definition - From Time History Functi le me	le la funció	n Tiempo are: Irme and Function Values) - Hist	501
ITRA A.14:	Definición c ry Function Definition - From Time History Functi le me ro 'RAUL/Desktop Vegi time MoQ_EW bit	Ie la funció	n Tiempo are: Irme and Function Values /alues at Equal Intervals of	0.01 0.01	503
Time H Time Histor	Definición c	le la funció	n Tiempo are: Inne and Function Values /alues at Equal Intervals of	0.01	501
ra A.14:	Definición c	IFILE IF	n Tiempo are: Ime and Function Values /alues at Equal Intervals of Type iree Format	0.01 0.01	501
ra A.14:	Definición c	Ie la funció	n Tiempo are: Time and Function Values Values at Equal Intervals of Type Tiree Format Vend Format	0.01 0.01	501
ra A.14:	Definición c ry Function Definition - From Time History Functi le me me moQ_EW bt Lines to Skip hars. Per Line to Skip of Points per Line to Stolened	Ie la funció	n Tiempo are: Time and Function Values Values at Equal Intervals of Type Tiree Format Chargeters per Ihm	0.01	503
ra A.14:	Definición of ry Function Definition - From Time History Functi le me ny RAUL/Desktop \regi time MOQ_EW bit Lines to Skip hars. Per Line to Skip of rof Points per Line at to User Defined	Ie la funció	n Tiempo are: Ime and Function Values /alues at Equal Intervals of /spe iree Format characters per Item	0.01 0.01	
Time H Time Histor	Definición of ry Function Definition - From Time History Functi le mre m/NOQ_EW bat Lines to Skip nor A Points per Line at to User Defined iraph	Ie la funció	n Tiempo re: Ime and Function Values /alues at Equal Intervals of Iype ree Format 'ixed Format Characters per Item	0.01	
Time Hi Time Histor tions OQ_NS Function F File Na CNUse history Header Prefix C Number Convert Function G	Definición of y Function Definition - From Time History Functi le me me MOQ_EW bd Lines to Skip hars. Per Line to Skip of Points per Line to User Defined iraph	le la funció	n Tiempo re: Ime and Function Values /alues at Equal Intervals of Type ree Format ixed Format Characters per Item	0.01	
Time H Time Histor	Definición o ry Function Definition - From Time History Functi le me me NRAUL/Desktop/vegi time MOQ_EW bd Lines to Skip 0 rof Points per Line to User Defined iraph	le la funció	n Tiempo se: Ime and Function Values /alues at Equal Intervals of Type ree Format ixed Format Characters per Item	0.01	501
ra A.14:	Definición of ry Function Definition - From Time History Functi le me ra 'RAUL/Desktop vegi time MOQ_EW bit Lines to Skip 0 rof Points per Line to User Defined raph	le la funció	are: Ime and Function Values /alues at Equal Intervals of Type ree Format Characters per Item	0.01	501
ra A.14:	Definición c ry Function Definition - From Time History Functi le me ms RAUL/Desktop Vegi time MOQ_EV bit Lines to Skip 0 r of Points per Line 1 at to User Defined iraph	le la funció	are: Time and Function Values /alues at Equal Intervals of Type Tree Format Characters per Item	0.01	.01
EVV NS Function F File Na C:VUse Number Conv Function G 000 200 100 0	Definición c	le la funció	are: Time and Function Values /alues at Equal Intervals of Type Tree Format Characters per Item	0.01	501
ra A.14:	Definición of ry Function Definition - From Time History Functi le me ra VRAUL/Desktop \regi time MOQ_EW bat Lines to Skip 0 rof Points per Line att to User Defined iraph	le la funció	In Tiempo		501
Ira A.14:	Definición o ry Function Definition - From Time History Functi le me me NRAUL/Desktop/vegi time MOQ_EW bd Lines to Skip 0 rof Points per Line at to User Defined iraph	le la funció	n Tiempo see: Ime and Function Values /alues at Equal Intervals of Type ree Format Characters per Item		501
IIRA A.14:	Definición c ry Function Definition - From Time History Functi le me me ma SRAUL/Desktop Vegi time MOQ_EW bit Lines to Skip of Points per Line at to User Defined argeh	le la funció	are: Ime and Function Values /alues at Equal Intervals of Type ree Format Characters per Item	0.01	
Ira A.14:	Definición of ry Function Definition - From Time History Functi le me na SRAUL/Desktop Vegi time MOQ_EV bit Lines to Skip 0 of Points per Line 1 ext to User Defined iraph	le la funció	n Tiempo	0.01 	
Ira A.14:	Definición of ry Function Definition - From Time History Functi le me na 'RAUL/Desktop Vegi time MOQ_EVUA Lines to Skip 0 of of Points per Line at to User Defined zo 40 e0	le la funció	In Tiempo	0.01	Jor

Figura A.15: Acelerograma de diseño Moquegua (Junio-2001) Este-Oeste

Figura A.17: Acelerograma de diseño Ica-pisco (Agosto-2007) Este-Oeste

ICA_PISCO_200	Time History	/ Function Name	ICA_PISCO_2007NS
MOQ_NS	Function File		Values are:
	File Name	Browse	Time and Function Values
	C:\Users\RAUL\Desktop\regi tir history\PISCO_2007NS.txt	ne	Values at Equal Intervals of 0.01
	Header Lines to Skip	0	Format Type
	Prefix Chars. Per Line to Skip	0	Free Format
	Number of Points per Line	1	Fixed Format
	Convert to User Defined	View File	Characters per Item
	480 300 240 - 120 - -120 -240 - -380 0 25 50	75 100	125 150 175 200 225

Figura A.18: Acelerograma de diseño Ica-pisco (Agosto-2007) Norte-Sur

Figura A.19: Acelerograma de diseño Arequipa (Junio-2005) Este-Oeste

AQP001_EW	Time History Function Name AQP001_NS
ICA_PISCO_200 MOQ_EW MOQ_NS	Function File Values are: File Name Browse C:\Users\RAUL\Desktop\vegi time history\AQP001_NS.bt O Header Lines to Skip 0 Prefix Chars. Per Line to Skip 0 Number of Points per Line 1 Convert to User Defined View File
	Function Graph

Figura A.20: Acelerograma de diseño Arequipa (Junio-2005) Norte-Sur

Una ves cargado los registros sismico, en la opción Define/Load Cases/Add New Load Cases.

d Cases			Click to:
Load Case Name	Load Case Type		Add New Case
Dead	Linear Static		Add Copy of Case
Live	Linear Static		Modify/Show Case
Live techo	Linear Static		Delete Case
acabados	Linear Static	*	
EQXX	Response Spectrum		Show Load Case Tree
EQYY	Response Spectrum	*	
case box	Nonlinear Modal History (FNA)		
case 1yy	Nonlinear Modal History (FNA)		ОК
			Cancel

Figura A.21: Difiniendo Casos de Carga Sísmica

Definimos el registro en las dos direcciones de la estructura en el sentido x(U1) y en la dirección y(U2).

Load Cases	General				
1	d Ci Load Case Name		case 1xx		Desian
Dead	Load Case Type/Subtype	Time History	∨ Nor	nlinear Modal (FNA)	/ Notes
Live	Exclude Objects in this Groun)	Not Applicable		
Live techo	Mass Cause	,			_
acabados	Mass Source		Previous (MsSrc	1)	
EQXX	Initial Conditions				
EQYY	Zero Initial Conditions - St	tart from Unstressed	d State		
case 1xx	Continue from State at Er	nd of Nonlinear Cas	e (Loads at End of Ca	ase ARE Included)	
case 1yy	Nonlinear Case				
<u> </u>	Loads Applied		1		
	Load Type	Load Name	Function	Scale Factor	
	Acceleration U1		MOQ_EW	0.0116	Add
10	Acceleration U2		MOQ_NS	0.0156	Delete
()					Advanced
6100)					
0	Other Parameters				
	Modal Load Case		Modal	,	1
0.00	Number of Output Time Step	5		19892	
0	Output Time Step Size			0.01	sec
	Modal Damping	opetant at 0.05		Modify/Show	-
	Nonlinear Parameters	Unstant at U.U.D		Modily/ Show	
Ux ··· x		erault		Modify/Show	
igura A.2	2: Caso de Aná	lisis (c	ase1xx)	en Amba	as direcci
igura A.2	2: Caso de Aná	lisis (c	ase1xx)	en Amba	as direcci
gura A.2	2: Caso de Aná	lisis (c	ase1xx)	en Amba	as direcci
ura A.2	2: Caso de Aná	lisis (c	ase1xx)	en Amba	as direcci
Load Cases	2: Caso de Aná	lisis (c	ase1xx)	en Amba	as direcci
Load Cases	2: Caso de Aná Load Case Data General Load Case Name Load Case Type/Subtype	lisis (c	ase1xx)	en Amba	es direcci
ura A.2	2: Caso de Aná	lisis (c	ase1xx)	en Amba	Design
Load Cases	2: Caso de Aná	lisis (c	ase1xx)	en Amba	Design
ura A.2	2: Caso de Aná Load Case Data de Case Name Load Case Name Load Case Type/Subtype Exclude Objects in this Group Mass Source	lisis (c	ase1xx)	en Amba linear Modal (FNA)	Design
Load Cases	2: Caso de Aná Load Case Data General Load Case Name Load Case Name Load Case Name Exclude Objects in this Group Mass Source Initial Conditions	lisis (c	ase1xx)	en Amba Ilmear Modal (FNA)	Design
Load Cases Load Cases	2: Caso de Aná Load Case Data d C Load Case Name Load Case Name Load Case Type/Subtype Exclude Objects in this Group Mass Source Initial Conditions - St @ Zero Initial Conditions - St	lisis (c	ase1xx)	en Amba alinear Modal (FNA)	es direcci
Load Cases Load Cases	2: Caso de Aná Load Case Data Load Case Name Load Case Name Exclude Objects in this Group Mass Source Initial Conditions - St © Zero Initial Conditions - St O Continue from State at Er	lisis (c	ase1xx)	en Amba Innear Modal (FNA)	es direcci
Load Cases Load Load Load Load Load Load Load Load	2: Caso de Aná Load Case Data General Load Case Name Load Case Name Load Case Type/Subtype Exclude Objects in this Group Mass Source Initial Conditions - St O Continue from State at Er Norlinear Case	Ilisis (c	ase1xx)	en Amba	es direcci
Coad Cases Load Cases	2: Caso de Aná Ela Load Case Data General Load Case Name Load Case Name Load Case Type/Subtype Exclude Objects in this Group Mass Source Initial Conditions - St O Continue from State at Er Norilnear Case	Ilisis (c	ase1xx)	en Amba	Design Notes
gura A.2 Load Cases Load Cases	2: Caso de Aná 2: Caso de Aná General Load Case Data General Load Case Name Load Case Name Load Case Type/Subtype Exclude Objects in this Group Mass Source Initial Conditions - St O Continue from State at Er Nonlinear Case Loads Appled	lisis (c	ase1xx)	en Amba	Design Notes
gura A.2	2: Caso de Aná Caso de Aná General Load Case Data General Load Case Name Load Case Name Load Case Type/Subtype Exclude Objects in this Group Mass Source Initial Conditions © Zero Initial Conditions - St O Continue from State at Er Nonlinear Case Loads Appled Load Type	lisis (c	ase1xx)	en Amba	Design Notes
Load Cases Load Cases	2: Caso de Aná Load Case Data Load Case Data Load Case Name Load Case Name Load Case Type/Subtype Exclude Objects in this Group Mass Source Initial Conditions - St © Continue from State at Er Nonlinear Case Loads Appled Load Type Acceleration 12	lisis (c	ase1xx)	en Amba	Design Notes
Egura A.2	2: Caso de Aná Load Case Data General Load Case Name Load Case Name Load Case Type/Subtype Exclude Objects in this Group Mass Source Initial Conditions - St O Continue from State at Er Nonlinear Case Loads Applied Load Type Acceleration U2 Acceleration U1	Lisis (c	a.se1xx)	en Amba	Design Notes
Load Cases Load Cases	2: Caso de Aná Electrica Case Data Caneral Load Case Name Load Case Name Load Case Type/Subtype Exclude Objects in this Group Mass Source Initial Conditions - St O Continue from State at Er Norlinear Case Load Sepoled Load Type Load Type Acceleration U2 Acceleration U1	Load Name	ase1xx)	en Amba	Design Notes
gura A.2	2: Caso de Aná Electrica de Case Data General Load Case Data Cad Case Name Load Case Type/Subtype Exclude Objects in this Group Mass Source Initial Conditions - St O Continue from State at Er Nonlinear Case Load Sappled Load Type Acceleration U2 Acceleration U1	lisis (c	ase1xx)	en Amba	Design Notes
gura A.2	2: Caso de Aná Caso de Aná Caso de Aná Caso de Aná Caso de Aná Caso de Ana Load Case Data Caso Type/Subtype Exclude Objects in this Group Mass Source Initial Conditions © Zero Initial Conditions - St © Continue from State at Er Nonlinear Case Load Appled Load Type Acceleration U1 Other Parameters	lisis (c	ase1xx)	en Amba	Design Design Notes
Load Cases	2: Caso de Aná Load Case Data Load Case Data Load Case Name Load Case Name Load Case Type/Subtype Exclude Objects in this Group Mass Source Initial Conditions - St O Continue from State at Er Nonlinear Case Loads Appled Load Type Acceleration U2 Acceleration U1 Other Parameters Model Load Case	lisis (c	ase1xx)	en Amba	es direcci
Load Cases	2: Caso de Aná Load Case Data General Load Case Name Load Case Name Load Case Type/Subtype Exclude Objects in this Group Mass Source Initial Conditions - St O Continue from State at Er Nonlinear Case Loads Applied Load Type Acceleration U1 Other Parameters Modal Load Case Number of Advent Two State	Lisis (c	a.se1xx)	en Amba	es direcci
Sura A.2	2: Caso de Aná Load Case Data General Load Case Name Load Case Name Load Case Type/Subtype Exclude Objects in this Group Mass Source Initial Conditions - St O Continue from State at Er Noninear Case Load Sepeled Load Type Load Type Load Type Load Type Load Type Load Case Norinear Case UI Other Parameters Modal Load Case Number of Output Time Steps	Load Name	ase1xx)	en Amba	Design Notes
Load Cases	2: Caso de Aná Ela Load Case Data General Load Case Data Cad Case Name Load Case Name Load Case Type/Subtype Exclude Objects in this Group Mass Source Initial Conditions - St O Continue from State at Er Nonlinear Case Loads Applied Load Type Acceleration U1 Other Parameters Modal Load Case Number of Output Time Steps Size	Load Name	ase1xx)	en Amba	Design Notes
Load Cases	2: Caso de Aná Ceneral Load Case Data General Load Case Name Load Case Name Load Case Type/Subtype Exclude Objects in this Group Mass Source Initial Conditions © Zero Initial Conditions - St O Continue from State at Er Nonlinear Case Load Suppled Load Type Acceleration U2 Acceleration U1 Other Parameters Modal Load Case Number of Output Time Steps Size Modal Damping C	lisis (c	ase1xx)	en Amba	Design Design Notes Add Delete Advanced sec
Load Cases	2: Caso de Aná Load Case Data de Case Data Load Case Name Load Case Name Load Case Name Load Case Type/Subtype Exclude Objects in this Group Mass Source Initial Conditions - St Continue from State at Er Nonlinear Case Loads Applied Load Type Acceleration U2 Acceleration U2 Acceleration U2 Acceleration U2 Acceleration U2 Acceleration U2 Acceleration U2 Acceleration U2 Modal Load Case Number of Output Time Steps Output Time Step Size Modal Damping C Nonlinear Parameters	Lisis (c	ase1xx)	en Amba	es direcci

Figura A.23: Caso de Análisis (case1yy) en Ambas direcciones

Load Cases	General
loa	Load Case Name case2ox Design
Dead	Load Case Type/Subtype Time History V Nonlinear Modal (FNA) V Notes
Live	Exclude Objects in this Group Not Applicable
Live techo	Mass Source Previous (MsSrc1)
acabados	
EQXX	Initial Conditions
case box	Zero initial conditions - start from Unstressed State
case1yy	Nonlinear Case
	Loads Applied
	Load Type Load Name Function Scale Factor
	Acceleration U1 ICA_PISCO_2007EW 0.0126 Add
0 im)	Acceleration U2 ICA_PISCO_2007NS 0.0103 Delete
(m) 2	
0	Uner Parameters
10	Modal V
	Number of Output Time Steps 21805
0	Output Time Step Size 0.01 sec
4	Modal Damping Constant at 0.05 Modify/Show
OLL	Nonlinear Parameters Default Modify/Show
	OK Cancel
ura A.2	4: Caso de Análisis (case2xx) en Ambas dire
ura A.2	4: Caso de Análisis (case2xx) en Ambas dire
Load Cases	4: Caso de Análisis (case2xx) en Ambas dire
ura A.2	4: Caso de Análisis (case2xx) en Ambas dire
Ira A.2	4: Caso de Análisis (case2xx) en Ambas dire
Load Cases	4: Caso de Análisis (case2xx) en Ambas directed de Case Data de Case Data de Case Type/Subtype Time Hatory Nonlinear Modal (FNA) Design Notes Notes
Load Cases	4: Caso de Análisis (case2xx) en Ambas direct de Case Data de Case Type/Subtype Time History Nonlinear Modal (FNA) Exclude Objects in this Group Not Applicable Mas Source Not o the composition of th
Load Cases	4: Caso de Análisis (case2xx) en Ambas directed de Case Data de Case Name Load Case Type/Subtype Load Case Type/Subtype Exclude Objects in this Group Mass Source Previous (MaSire1)
Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases	4: Caso de Análisis (case2xx) en Ambas director de Case Data de Case Name Load Case Name Load Case Type/Subtype Time History Nonlinear Modal (FNA) Notes Notes Notes
Load Cases Load Cases	4: Caso de Análisis (case2xx) en Ambas dire de Case Data de Case Name Load Case Name Load Case Type/Subtype Mass Source Previous (MaSrc1) Intial Conditions © Zero Initial Conditions - Stat from Unstressed State
Load Cases Load Cases	4: Caso de Análisis (case2xx) en Ambas dire 4: Caso de Análisis (case2xx) en Ambas dire ad C Ceneral Load Case Data Case Type/Subtype Time History Norlinear Modal (FNA) Exclude Objects in this Group Not Applicable Mass Source Previous (MaSie1) httal Conditions © Zero Initial Conditions - Statt from Unstressed State Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included)
Load Cases Load Load Load Load Load Load Load Load	4: Caso de Análisis (case2xx) en Ambas dire de General Load Case Data General Load Case Name Load Case Type/Subtype Time History Norlinear Modal (FNA) Exclude Objects in this Group Mass Source Previous (MsSrc1) Initial Conditions © Zero Initial Conditions - Stat from Unstressed State Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case
Load Cases Load Cases	4: Caso de Análisis (case2xx) en Ambas dire 4: Caso de Análisis (case2xx) en Ambas dire Load Case Data Ceneral Load Case Name Load Case Type/Subtype Time History Nonlinear Modal (FNA) Exclude Objects in this Group Mass Source Previous (MaSic1) Notes © Zero Initial Conditions - Stat from Unstressed State Contrue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case Loads Appled
Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Cases Load Cases Load Load Cases Load Load Cases Load C	4: Caso de Análisis (case2xx) en Ambas dire de Case Data Ceneral Load Case Data Ceneral Load Case Name Load Case Type/Subtype Time History Nonlinear Modal (FNA) Exclude Objects in this Group Mass Source Previous (MaSic1) Notes © Zero Initial Conditions - Stat from Unstressed State Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case Load Appled Load Appled Load Name Function Scale Factor (Load Stype Load Name Function Case Factor (Load Stype Load Name Function Case Factor (Load Scale Factor (Load Stype Load Name Function Case Factor (Load Stype Load Name Function Case Factor (Load Stype Load Stype Load Name Function Case Factor (Load Stype Case Factor (Load Stype Load Name Function Case Factor (Load Stype Load Name Function Case Factor (Load Stype Case Factor (Load Stype Load Name Case Factor (Load Stype Load Name Function Case Factor (Load Stype Case Factor (Load Stype (Load Stype Case Factor (Load Stype (Load Stype
Load Cases Load Load Load Load Load Load Load Load	4: Caso de Análisis (case2xx) en Ambas dire
Load Cases	4: Caso de Análisis (case2xx) en Ambas dire 4: Caso de Análisis (case2xx) en Ambas dire de General Load Case Data General Load Case Name Load Case Type/Subtype Time History Nonlinear Modal (FNA) Exclude Objects in this Group Not Applicable Mass Source Previous (MaSie1) httal Conditions © Zero Initial Conditions - Stat from Unstressed State Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case Loads Appled Load Stype Load Name Function Scale Factor Acceleration U2 ICA_PISCO_2007EW 0.0126 Acceleration U1 ICA_PISCO_2007NS 00103
Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Case Jux Case Jux Case Jux Case Jux Case Jux	4: Caso de Análisis (case2xx) en Ambas dire 4: Caso de Análisis (case2xx) en Ambas dire de General Load Case Data General Load Case Type/Subtype Time History Nonlinear Modal (FNA) V Exclude Objects in this Group Not Applicable Mass Source Previous (MsSrc1) Notes © Zero Initial Conditions - Stat from Unstressed State Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case Load Appled Load Stype Load Name Function Scale Factor Acceleration U2 ICA_PISCO_2007EW 0.0125 Acceleration U1 ICA_PISCO_2007NS 0.0103
Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Case Load Live Live techo acabados EQXX EQYY case Loa Cases Loa Cases EQXX EQY case Load Cases	4: Caso de Análisis (case2xx) en Ambas dire 4: Caso de Análisis (case2xx) en Ambas dire Ceneral Load Case Data Ceneral Load Case Type/Subtype Time History Nonlinear Modal (FNA) ✓ Design Notes Notes Notes Previous (MaSic1) Notes © Zero Initial Conditions - Stat from Unstressed State Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case Load Appled Load Name Function Scale Factor Acceleration U2 Acceleration U2 CALPISCO_2007NS 0.0103 Other Parameters
Load Cases Load Cases	4: Caso de Análisis (case2xx) en Ambas dire 4: Caso de Análisis (case2xx) en Ambas dire de General Load Case Data General Load Case Type/Subtype Time History Nonlinear Modal (FNA) Exclude Objects in this Group Not Applicable Mass Source Previous (MsSic1) Notes © Zero Initial Conditions - Stat from Unstressed State © Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case Code Appled Load Appled Load Appled Load Stype Load Name Function Scale Factor Acceleration U2 ICA_PISCO_2007EW 0.0125 Acceleration U1 ICA_PISCO_2007NS 0.0103 Other Parameters Modal Load Case
Load Cases	4: Caso de Análisis (case2xx) en Ambas dire 4: Caso de Análisis (case2xx) en Ambas dire bad Case Data General Load Case Type/Subtype Time History Nonlinear Modal (FNA) V Load Case Type/Subtype Time History Not Applicable Mass Source Previous (MsSic1) Notes e Zero Initial Conditions - Start from Unstressed State Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case Load Appled Load Type Load Name Function Scale Factor Acceleration U2 ICA_PISCO_2007EW 0.0126 Acceleration U1 ICA_PISCO_2007NIS 0.0103 Other Parameters Modal Load Case Modal V Norde Load Case Modal V
Load Cases	4: Caso de Análisis (case2xx) en Ambas dire 4: Caso de Análisis (case2xx) en Ambas dire de Case Data Care Tope / Subtype Time History Nonlinear Modal (FNA) v Load Case Type / Subtype Time History Nonlinear Modal (FNA) v Exclude Objects in this Group Net Applicable Previous (McSicri) Hital Conditions - Start from Unstressed State Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case Load Appled Load Type Load Name Function Scale Factor Acceleration U2 ICA_PISCO_2007EW 0.0125 Acceleration U1 ICA_PISCO_2007INS 0.0103 Other Parameters Modal Load Case Medal V Norther of Output Time Steps 21805 Other Jaca Step Step Step 21805
oad Cases Load Cases Cases Load Cases Cases Load Cases Case	4: Caso de Análisis (case2xx) en Ambas dire 4: Caso de Análisis (case2xx) en Ambas dire de Case Data de Case Type/Subtype Time History Nonlinear Modal (FNA) Design. Load Case Type/Subtype Time History Not Applicable Mass Source Previous (MaSic1) Mass Source Previous (MaSic1) Mass Source Case Type Load Name Function Scale Factor Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case Loads Appled Load Type Load Name Function Scale Factor Acceleration U1 CA_PISCO_2007NS 0.0103 Other Parameters Modal Load Case Modal Number of Output Time Steps 2005 Output Time Step Size Modal Dampion Control Case ARE 1005 Notification Case 1005 Notifica
Load Cases	4: Caso de Análisis (case2xx) en Ambas direct de Case Data de Case Data de Case Type/Subtype Time History Nonlinear Modal (FNA) Design Load Case Type/Subtype Time History Nonlinear Modal (FNA) Nonlinear Modal (FNA) Nonlinear Modal (FNA) Nonlinear Case Load Case Type/Subtype Time History Not Applicable Mass Source Previous (McSic1) histal Conditions - Start from Unstressed State Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case Load Applied Load Type Load Name Function Scale Factor Add Coderation U2 ICA_PISCO_2007NS 00103 Cher Parameters Modal Load Case Modal Number of Output Time Steps [101] sec Modal Damping Constant at 0.05 Modal Damping Constant at 0.05 Mo

Figura A.25: Caso de Análisis (case2yy) en Ambas direcciones

Load Cases	General
loa	ad C Load Case Name case2ox Design
Dead	Load Case Type/Subtype Time History V Nonlinear Modal (FNA) V Notes
Live	Exclude Objects in this Group Not Applicable
Live techo	Mass Source Previous (MsSrc1)
acabados	
EQXX	Initial Conditions Ord Key Mathematic Order
case box	Zero initial Conditions - Start from Unstressed State
case 1yy	Nonlinear Case
	, loads Applied
	Inad Tune Load Name Function Scale Factor
	Acceleration U1 ICA PISCO 2007EW 0.0126 Add
(iii)	Acceleration U2 ICA_PISCO_2007NS 0.0103 Delete
	Advance
	Other Parameters
	Modal Load Case Modal ~
0.000	Number of Output Time Steps 21808
0	Output Time Step Size 0.01 sec
	Modal Damping Constant at 0.05 Modify/Show
	Nonlinear Parameters
U ⁴ → x	Modify/Show
	01/ 0 /
	UK Cancel
ura A.2	6: Caso de Análisis (case3xx) en Ambas direc
ura A.2	6: Caso de Análisis (case3xx) en Ambas direc
ura A.2	6: Caso de Análisis (case3xx) en Ambas direc
ura A.2	6: Caso de Análisis (case3xx) en Ambas direc
Load Cases	26: Caso de Análisis (case3xx) en Ambas direc
tra A.2	26: Caso de Análisis (case3xx) en Ambas direct de Case Data General Load Case Name Load Case Name Load Case Type/Subtype Time History Nonlinear Modal (FNA) V Notes
Load Cases	26: Caso de Análisis (case3xx) en Ambas direct de Case Data de Case Name case2yy Design Load Case Name case2yy Design Load Case Type/Subtype Time History Norlinear Modal (FNA) v Notes
Load Cases	26: Caso de Análisis (case3xx) en Ambas direct ad C Load Case Data Ceneral Load Case Name Load Case Type/Subtype Exclude Objects in this Group Mass Source Previous (MaSirc1)
Load Cases	26: Caso de Análisis (case3xx) en Ambas direct ad C Load Case Data
Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases	26: Caso de Análisis (case3xx) en Ambas direct ad C Load Case Data General Load Case Name Load Case Type/Subtype Enclude Objects in this Group Mass Source Previous (MaSiro1) Initial Conditions © Tran Initial Conditions © Tran Initial Conditions © Tran Initial Conditions
Load Cases Load Cases	26: Caso de Análisis (case3xx) en Ambas direct ad C Load Case Data ad C Load Case Name Load Case Name Not Applicable Previous (MsSrc1) Initial Conditions © Zero Initial Conditions - Stat from Unstressed State
Load Cases Load Cases Load Cases Load Cases Load Load Load Load Cases Load Load Load Load Load Load Load Load	26: Caso de Análisis (case3xx) en Ambas direct ad C Ceneral Load Case Data Ceneral Load Case Name Load Case Name Load Case Name Case2yy Load Case Type/Subtype Time History V Norlinear Modal (FNA) V Exclude Objects in this Group Mass Source Previous (MaSic1) Initial Conditions © Zero Initial Conditions - Start from Unstressed State Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Notedee: Case
Load Cases Load Load Load Load Load Load Load Load	26: Caso de Análisis (case3xx) en Ambas direct ad C Ceneral Load Case Data Case Type/Subtype Time History ∨ Norlinear Modal (FNA) ∨ Exclude Objects in this Group Not Applicable Mass Source Previous (MaSic1) Initial Conditions © Zero Initial Conditions - Start from Unstressed State ○ Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case
Load Cases Load Cases	6: Caso de Análisis (case3xx) en Ambas direct Gereral Load Case Data Gereral Load Case Type/Subtype Time History ✓ Nonlinear Modal (FNA) ✓ Exclude Objects in this Group Not Applicable Mass Source Previous (MaSrc1) Initial Conditions © Zero Initial Conditions - Start from Unstressed State Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case Loads Applied
Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Case Load Load Cases Load Load Load Load Load Load Load Load	6: Caso de Análisis (case3xx) en Ambas direct General Load Case Data General Load Case Name <u>case2yy</u> Design Load Case Type/Subtype <u>Time History</u> <u>Nonlinear Modal (FNA)</u> <u>Design</u> Not Applicable Mass Source <u>Previous (MaSic1)</u> Initial Conditions © Zero Initial Conditions - Start from Unstressed State Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case Loads Appled Load Type Load Name Function Scale Factor
Load Cases	6: Caso de Análisis (case3xx) en Ambas direct General Load Case Data General Load Case Name Case2yy Load Case Name Case2yy Load Case Type/Subtype Time Histoy ✓ Nonlinear Modal (FNA) ✓ Exclude Objects in this Group Mass Source Previous (MaSic1) Initial Conditions © Zero Initial Conditions - Start from Unstressed State Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case Loads Appled Load Type Load Type Load Name Function Scale Factor Add
Load Cases Load Cases	6: Caso de Análisis (case3xx) en Ambas direct de Ceneral Load Case Data de Ceneral Load Case Type/Subtype Time History ∨ Norilnear Modal (FNA) ∨ Design Load Case Type/Subtype Time History ∨ Norilnear Modal (FNA) ∨ Design Not Applicable Mass Source Previous (MaSrc1) Initial Conditions @ Zero Initial Conditions - Start from Unstressed State Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case Loads Applied Load Type Load Name Function Scale Factor Acceleration U2 ICA_PISCO_2007EW 0.0125 Acceleration U1 ICA_PISCO_2007NIS 0.0103 Detete
Load Cases Load Cases Load Cases Load Cases Load Cases Load Load Load Load Load Cases Load Load Load Load Load Load Load Load	6: Caso de Análisis (case3xx) en Ambas direct de Case Data de Case Data de Case Name case2yy Design Load Case Type/Subtype Time History ✓ Nonlinear Modal (FNA) ✓ Exclude Objects in this Group Not Applicable Mass Source Previous (MaSrc1) Initial Conditions © Zero Initial Conditions - Start from Unstressed State Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case Loads Applied Load Type Load Name Function Scale Factor Acceleration U2 (CA_PISCO_2007NS 0.0103 Case Type Company of CA_PISCO_2007NS 0.0103
Load Cases	6: Caso de Análisis (case3xx) en Ambas direct 6: Caso de Análisis (case3xx) en Ambas direct ad C Load Case Data ad C Load Case Name Load Case Name Load Case Name Load Case Name Load Case Type/Subtype Time History Norlinear Modal (FNA) ✓ Not Applicable Mass Source Previous (MsSrc1) Initial Conditions © Zero Initial Conditions - Stat from Unstressed State Continues from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case Load Appled Load Type Load Name Function Scale Factor Acceleration U2 CA_PISCO_2007EW 0.0126 Acceleration U1 CA_PISCO_2007IN 0.0103 Delete Add
Load Cases	6: Caso de Análisis (case3xx) en Ambas direct General Load Case Data Ceneral Load Case Name Load Case Name Load Case Name Load Case Type/Subtype Time History Norlinear Modal (FNA) Exclude Objects in this Group Mass Source Previous (MaSic1) Initial Conditions ② Zero Initial Conditions - Start from Unstressed State ○ Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case Coads Applied Load Type Load Name Case Type Load Name Case (Loads Applied Load Type Load Name Case (Loads Applied Load Type Load Name Case (Loads Applied Load Type Load Name Case (Loads Applied Conter Parameters Cother Parameters
Load Cases	6: Caso de Análisis (case3xx) en Ambas direct Gereral Load Case Data Gereral Load Case Type/Subtype Time History ✓ Norlinear Modal (FNA) ✓ Exclude Objects in this Group Not Applicable Mass Source Previous (MaSic1) Initial Conditions © Zero Initial Conditions - Start from Unstressed State Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case Codi Applied Load Type Load Name Function Scale Factor Acceleration U1 ICA_PISCO_2007EW 0.0125 Acceleration U1 ICA_PISCO_2007INS 0.0103 Other Parameters Modal Load Case Model ✓
Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Load Cases Case Jy Case Jy Case Jy Case Jy Case Jy	6: Caso de Análisis (case3xx) en Ambas direct General Load Case Data General Load Case Name Load Case Type/Subtype Time Histoy ✓ Nonlinear Modal (FNA) ✓ Esclude Objects in this Group Mass Source Previous (MaSici) Initial Conditions © Zero Initial Conditions - Start from Unstressed State Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case Load Appled Load Type Load Name Function Conter Parameters Modal Load Case Number of Output Time Steps Z1806
Ira A.2	6: Caso de Análisis (case3xx) en Ambas direct General Load Case Data General Load Case Name case2yy Design Load Case Type/Subtype Time History ✓ Nonlinear Modal (FNA) ✓ Exclude Objects in this Group Not Applicable Mass Source Previous (MaSic1) Initial Conditions © Zero Initial Conditions - Start from Unstressed State Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case Load Type Load Name Function Scale Factor Acceleration U2 Acceleration U2 Acceleration U2 Acceleration U1 CA_PISCO_2007EW 0.0125 Acceleration U2 Acceleration U1 CA_PISCO_2007INS 0.0103 Other Parameters Modal Load Case Modal Case Number of Output Time Steps Output Time Step Size 0.01 sec
Ira A.2	6: Caso de Análisis (case3xx) en Ambas direct General Load Case Data General Load Case Name Case2yy Load Case Type/Subtype Time Histoy Nonlinear Modal (FNA) ✓ Exclude Objects in this Group Mass Source Previous (MsSic1) Initial Conditions © Zero Initial Conditions - Start from Unstressed State Continue from State at End of Nonlinear Case (Loads at End of Case ARE Included) Nonlinear Case Load Type Load Type Load Type Load Name Function Scale Factor Add Delete Modal Norther of Output Time Steps Output Time Step Size Norther of Output Time Steps Output Time Step Size Norther Step Size Norther of Output Time Steps Output Time Step Size Norther of Duput Time Steps Output Time Step Size Norther S
oad Cases Load Cases L	6: Caso de Análisis (case3xx) en Ambas direct 6: Caso de Análisis (case3xx) en Ambas direct 6: Caso Data Control Case Data Case Data Case Type/Subtype Time History Norlinear Modal (FNA)

Figura A.27: Caso de Análisis (case1xx) en Ambas direcciones

Anexos B

Procedimientos Para Calcular la Distribución de Amortiguadores viscosos en la Aplicación (AGs)

Una ves modelado la estructura, se procede a iniciar la aplicación (AGs) para la ejecución de los algoritmos genéticos

Figura B.1: Ventana principal de la aplicación desarrollada DeViDaAGs

Nos vamos al botón desplegable File y clikeamos en New luego nos sale como se muestra en la figura B.2.

Figura B.2: Entrada para la Aplicación de DeViDaAGs

Luego cargamos los datos correspondientes, cantidad de disipadores por piso, la altura de la edificación, los parámetros del AGs tal como se muestra en la figura B.3.

Model Explorer	V Plan View - Story12 - Z = 43 (m)	▼ X I S D View	. ×
Model Dupley Tables Reports Detailing Model Project Project Project Projects Snuctural Objects Groups Ductard Different Ductors Ductors	DeV/DaAGs v1.1.0 File Edit Tool Run Help New Properties AGs	×	
A Named Plots	Detos de la Edificación Nº de Paos 12 Cantidad de Diapa- dores por piso 4 Propiedades de Diapadores Abha Dir x:x Dir y-y C (m*s/m) 800	Datos de Algoritmos Geneticos Probabilidad de 0.03 Probabilidad de 0.65 Cruce Nº de Individuos 15 Nº Total de 30 Generaciones 30 Deriva Objetivo Metodología Hanus Deriva Limite 0.0043	
A		Aceptar Cancelar	

Figura B.3: Entrada de Datos General para la Aplicación de DeViDaAGs

Una vez completado estos datos, se procede la ejecución mediante el icono

Anexos C

Diseño de elementos brazo

metálico del dispositivo

C.0.0.1. cálculo de rigidez y diseño de brazo metálico

Para el calculo de rigidez se ha considerado los siguientes características del perfil metálico Round HSS $20.00 \ge 0.375$ como se tabla C.1

	Dimensione	s ROUND HSS	$5\ 20.00\ \mathrm{x}\ 0.37$	5
D ext.(in)	D int. (in)	Espesor (in)	Área (in^2)	Inercia (in^4)
20	19.65	0.349	21.5	1040

Tabla C.1: Rigidez del Brazo Metálico [AISC Steel Construcción]

calculando valor de "K" con la siguiente formula

$$K = \frac{EA}{L}$$

(C.1)

Donde:

E = Modulo de elasticidad del acero

- $E = 29000 ksi = 20.4 \times 10^6$
- A =Área de la sección transversal

 $A=21{,}5in^2=138{,}71\times10^{-4}$

L =longitud del brazo metálico

Para el eje "x"

$$Lx = 7,38m$$

$$K_x = \frac{20.4 \times 10^6 \times 138,71 \times 10^{-4}}{7,38} = 38327,3tn/m$$

El brazo metálico será de diseño estándar, se diseñará para una fuerza de 2000kn que es el valor máximo, las propiedades y detalles se muestran a continuación.

Figura C.1: Propiedades y dimensiones del Disipador (2000KN)

Las características principales son:

- \checkmark Área del perfil metálico : $A=21,5~in^2$
- $\checkmark\,$ Radio del perfil metálico : r=6,95~in
- ✓ Longitud de diseño : L = 237,6423 in
- $\checkmark\,$ Modulo de elasticidad del acero : $E_{ac}=29000\ ksi$
- $\checkmark\,$ Esfuerzo de Fluencia : $F_y=35~ksi$

 $\checkmark\,$ resistencia en tensión : $F_u=50~ksi$

Calculando el valor de longitud real del disipador fluido viscoso

$$L_{brazo} = L_x - \text{MID-STROKE LENGTH}$$

 $L_{brazo} = 7,38 - 1,34 = 6,036m$
 $L_{brazo} = 6,036m \approx 237,6423 \ in$

calculando el esfuerzo de pandeo crítico:

$$F_e = \frac{\pi^2 \times E}{\left(\frac{L}{r}\right)^2} \tag{C.2}$$

Remplazando en ${\rm C.2}$

$$F_e = \frac{\pi^2 \times 29000}{\left(\frac{237,642}{6,92}\right)^2} = 237,64 \ ksi$$

 $F_e > 35~ksi$ El perfil trabaja en el rango Inelastico calculando el esfuerzo de pandeo por flexión en el perfil HSS.

$$F_{cr} = \left(0.658^{\frac{F_y}{F_e}}\right) \times F_y \tag{C.3}$$

Remplazando en C.3

$$F_{cr} = \left(0,658^{\frac{35}{237,64}}\right) \times 35 = 32,98 \ ksi$$

Para la comprobación con las siguiente ecuación:

$$\phi P_n = \phi \times F_{cr} \times A \tag{C.4}$$

Reemplazando en C.4

$$\phi P_n = 0.9 \times 32.98 \times 21.5 = 637.9 \ 1 kips \approx 289.35 \ tnf$$

$$\phi T_n = \phi \times F_u \times A \tag{C.5}$$

Reemplazando en C.5

$$\phi T_n = 0.9 \times 35 \times 21.5 = 677.25 \ 1 kips \approx 307.20 \ tnf$$

Realizando la comprobación con los resultados obtenidos con la fuerza obtenida del análisis Tiempo Historia. $fuerza_{Link} = 193,71 \ tnf$

$$\phi P_n = 289,35 \ tnf > 193,71 \ tnf \dots$$
 (Si Cumple)

$$\phi T_n = 307,20 \ tnf > 193,71 \ tnf \dots$$
 (Si Cumple

• Para el eje "y"

Ly = 6,10m

$$K_x = \frac{20.4 \times 10^6 \times 138,71 \times 10^{-4}}{6,10} = 38327,3tn/m$$

Se hara el diseño y la comprobación para esta dirección con las mismas detalles y características de los brazos metálicos Round HSS 20.00 x 0.375, para una fuerza del disipador fluido viscoso obtenido del análisis tiempo historia. $fuerza_{Link} = 170,97 \ tnf$

Reemplazando en las siguientes ecuaciones: C.2, C.3, C.4 y C.5

$$F_e = \frac{\pi^2 \times 29000}{\left(\frac{187,2944}{6,92}\right)^2} = 394,11 \ ksi$$

 $F_e>35\ ksi$ El perfil trabaja en el rango Inelastico

$$F_{cr} = \left(0,658^{\frac{35}{394,11}}\right) \times 35 = 33,72 \ ksi$$

$$\phi P_n = 0.9 \times 33,72 \times 21,5 = 652,54 \ 1 kips \approx 295,99 \ tnf$$

$$\phi T_n = 0.9 \times 35 \times 21.5 = 677.25 \ 1 kips \approx 307.20 \ tnf$$

Realizando la comprobación con los resultados obtenidos.

Anexos D

Código Fuente

Código Fuente D.1: Subroutina Fortran para la Aplicación

```
*****
1
    AUTOR : Bach.Ing. Adolfo Salvatierrra Condori
           : Bach.Ing. Ronal Salvatierra Condori
3
               *****
4
\mathbf{5}
      subroutine initial(ngen,ed,ef,ip,cd,cdt,mutacion,cruza,ind,poblacion
6
          ,matriz)
      use ETABS2016
7
      implicit none
8
9
      integer(kind=4), parameter:: nDimCON = 1 ! array dimension
      integer(kind=4):: i,j,k,ki=0,ngen,l!iteradores
10
      integer(kind=4):: pWindow
11
      integer(kind=INT_PTR_KIND()):: pcView
12
      integer(kind=4):: iUnits, iItemType
13
      integer(kind=INT_PTR_KIND()):: pSapObject, pSapModel !pointer a
14
         model object
      integer(kind=4) :: iStatus, iRet !error code returned from ETABS
15
      integer(kind=INT_PTR_KIND()):: pAnalyze, pAnalysisResults,
16
         pAnalysisResultsSetup !pointer
      integer(kind=INT_PTR_KIND()):: pPropLink !pointer for intro dampers
17
      character(len=256):: cProgramPath, cModelPath ,cNotes, cGUID
18
      real(kind=8):: KeModValue, CeModValue, KModValue, CModValue,
19
         CexpModValue
      logical(kind=2):: DOFModValue, NonModValue, FixModValue
20
      real(kind=8):: pDJ2, pDJ3
21
      type(SA_BOUNDS):: saBounds !bounds object defining for SafeArray
22
      integer(kind=INT_PTR_KIND()):: pDOF, pFixed, pNonLinear, pKe, pCe,
23
         pK, pC, pCexp !property modi
```

```
integer(kind=INT_PTR_KIND()):: pGetLinkObj !apuntador para
24
          coordenadas
      integer(kind=4):: P11,P12
25
      character(len=256):: P1,P2
26
      logical(kind=2):: cIsSingleJoint
27
      character(len=256):: pName ,clink,damp,gitex,nlin!clink---->cantidad
28
           de disipa
      1...........
29
      integer:: cd,ip ! para abrir archivos
30
      integer:: a(ip*2,cd*2),b(1,cd*2)
31
      real:: ed,ef
32
      33
      integer count1, count_rate
34
      integer:: vals(8)
35
      integer:: seeds(1),matriz(ind,9*ip),poblacion(ind,9*ip) !genotype
36
37
      1 . . . . . . . . . . . . . . . . . .
      real:: r,r1,cke(ip*2,2)
38
      integer:: o,m,j1,pm(1),pn(1),pmy(1),pny(1)
39
40
      !resultados
      real(8):: pix(ip), piy(ip),pix1(ind,ip),piy1(ind,ip),limi(1,2),limiy
41
          (1,2) !desplaza por pisos
      real(8):: fulx1(ip),fuly1(ip),fulxf(ind,ip),fulyf(ind,ip) !fuerzas
42
          de cada disipador
43
      real(8):: dezlx1(ip),dezly1(ip),dezlx1(ind,ip),dezly1(ind,ip) !
          dezpla. de cada disipador
      real:: calin(ind),caliny(ind),caf(ind),fucb(ind),cafy(ind),fucby(ind
44
          ) !calificaciones
      integer:: gen,ind,cdt
45
      real:: mutacion, cruza,Ce(ind,ip),alph(ind,ip),Cey(ind,ip),alphy(ind
46
          ,ip)
      .....
47
      call COMInitialize(iStatus) !attach to a running instance of ETABS
48
      call COMGetActiveObjectByProgID("CSI.ETABS2016.API.SapObject",
49
          pSapObject, iStatus)
      call COMQueryInterface(pSapObject, IID_cOAPI, pSapObject, iStatus) !
50
          sap object model
51
      iStatus = $c0API_GetSapModel(pSapObject, pSapModel)
      !desbloquear la llave
52
      iStatus = $cSapModel_SetModelIsLocked(pSapModel,.False., iRet)
53
      iUnits = 14
54
      iStatus = $cSapModel_SetPresentUnits(pSapModel, iUnits, iRet)
55
      56
      cNotes = ''
57
      cGUID = ''
58
      pDJ2 = 1.
59
      pDJ3 = 0.
60
```

```
61
      saBounds  solved = 0
62
      saBounds % extent = 6
63
      pDOF = SafeArrayCreate(VT_BOOL, nDimCON, saBounds)
64
      pNonLinear = SafeArrayCreate(VT_B00L, nDimCON, saBounds)
65
      pFixed = SafeArrayCreate(VT_BOOL, nDimCON, saBounds)
66
      pKe = SafeArrayCreate(VT_R8, nDimCON, saBounds)
67
      pCe = SafeArrayCreate(VT_R8, nDimCON, saBounds)
68
      pK = SafeArrayCreate(VT_R8, nDimCON, saBounds)
69
      pC = SafeArrayCreate(VT_R8, nDimCON, saBounds)
70
      pCExp = SafeArrayCreate(VT_R8, nDimCON, saBounds)
71
      72
      !abriendo archivos coordenadas
73
      open (11, FILE='COORD.txt')
74
      read(11,*) ((a(i,j), j=1,cd*2),i=1,ip*2)
75
76
      close(11)
      !-----
77
      !inicialiazando numeros aleatorios
78
      call date_and_time(values=vals)
79
      vals(8)=vals(5)+vals(6)+vals(7)
80
      call random_seed
81
      call random_seed(get=seeds)
82
83
      seeds=seeds*vals(8)
84
      call random_seed(put=seeds)
      85
      !generacion de la poblacion 0 inicialiazando
86
      matriz=0; poblacion=0
87
      !DIR$ PARALLEL ALWAYS
88
      do i=1,ind
89
90
         do j=1,9*ip
91
            call random_number(r)
           call random_number(r1)
92
           if(r>.5) matriz(i,j)=1
93
           if(r1>.5) poblacion(i,j)=1
94
         enddo
95
      enddo
96
97
      ļ.....
      !$OMP PARALLEL SECTIONS
98
      !$OMP SECTION
99
      call extracal(poblacion,Ce,alph,ind,ip)
100
      !$OMP SECTION
101
      call extracal(matriz,Cey,alphy,ind,ip)
102
      !$OMP END PARALLEL SECTIONS
103
      ·----
104
      do o=1, ind
105
         do concurrent(j=1:ip*2)
106
```

```
if(j<=ip) then</pre>
107
                 cke(j,1)=Ce(o,j)
108
109
                 cke(j,2)=alph(o,j)
              else
110
                 j1=j-ip
111
                 cke(j,1) = Cey(o,j1)
112
                 cke(j,2)= alphy(o,j1)
113
              endif
114
          enddo
115
116
           iStatus = $cSapModel_SetModelIsLocked(pSapModel,.False., iRet)
          cIsSingleJoint = .false.
117
          do j=1,ip*2
118
              DOFModValue = .TRUE.
119
              NonModValue = .TRUE.
120
              KeModValue = 0
121
122
              CeModValue = 0
              KModValue = 4498000
123
              CModValue = cke(j,1)
124
125
              CexpModValue = cke(j,2)
              do i=0,0
126
                 iRet = SafeArrayPutElement(pD0F,i, loc(D0FModValue))
127
                 iRet = SafeArrayPutElement(pNonLinear,i, loc(NonModValue))
128
129
                 iRet = SafeArrayPutElement(pKe,i, loc(KeModValue))
                 iRet = SafeArrayPutElement(pCe,i, loc(CeModValue))
130
                 iRet = SafeArrayPutElement(pK,i, loc(KModValue))
131
                 iRet = SafeArrayPutElement(pC,i, loc(CModValue))
132
                 iRet = SafeArrayPutElement(pCExp,i, loc(CexpModValue))
133
              enddo
134
135
              DOFModValue = .FALSE.
              NonModValue = .FALSE.
136
              FixModValue = .FALSE.
137
              KeModValue = 0
138
              CeModValue = 0
139
              KModValue = 0
140
              CModValue = 0
141
142
              CexpModValue = 0
              do i=1,5
143
                 iRet = SafeArrayPutElement(pDOF, i, loc(DOFModValue))
144
                 iRet = SafeArrayPutElement(pNonLinear, i, loc(NonModValue))
145
                 iRet = SafeArrayPutElement(pFixed, i, loc(FixModValue))
146
                 iRet = SafeArrayPutElement(pKe, i, loc(KeModValue))
147
                 iRet = SafeArrayPutElement(pCe, i, loc(CeModValue))
148
                 iRet = SafeArrayPutElement(pK, i, loc(KModValue))
149
                 iRet = SafeArrayPutElement(pC, i, loc(CModValue))
150
                 iRet = SafeArrayPutElement(pCExp, i, loc(CexpModValue))
151
```

```
enddo
152
             1......
153
154
             if(j<=ip) then</pre>
                !damp
155
                write (clink, '(I2)') j
156
                gitex=adjustl(clink)
157
                damp = 'dispx_'//trim(gitex)//''
158
             else
159
                write (clink, '(I2)') abs(ip-j)
160
                gitex=adjustl(clink)
161
                damp = 'dispy_'//trim(gitex)//''
162
             endif
163
             1.....
164
             iStatus = $cSapModel_GetPropLink(pSapModel, pPropLink)
165
             if(o==1) iStatus = $cSapModel_GetLinkObj(pSapModel,
166
                 pGetLinkObj)
             .....
167
                                       _ _ _ _ _ _ _ _ _ _ _ _ _
             b(1,:)=a(j,:)
168
169
             do k=1,cd*2,2
                P11=b(1,k)
170
                P12=b(1,k+1)
171
                write (clink, '(I4)') P11
172
173
                gitex=adjustl(clink)
                P1 = ''//trim(gitex)//''
174
                write (clink, '(I4)') P12
175
176
                gitex=adjustl(clink)
                P2 = ''//trim(gitex)//''
177
                 1........
178
                ki=1+ki
179
                write (clink, '(I4)') ki
180
                gitex=adjustl(clink)
181
                nlin = ''//trim(gitex)//''
182
                 183
                iStatus = $cPropLink_SetDamper(pPropLink, damp,pDOF, pFixed
184
                    ,pNonLinear, pKe, pCe, pK, pC, pCExp,pDJ2,pDJ3,cNotes,
                    cGUID, iRet)
185
                if(o==1) iStatus = $cLinkObj_AddByPoint(pGetLinkObj, P1, P2
                    , pName, cIsSingleJoint, damp, nlin, iRet)
                if(o==1) iStatus = $cLinkObj_SetProperty(pGetLinkObj, pName
186
                    , damp, iItemType, iRet)
             enddo
187
          enddo
188
          1.....
189
190
          !actualizando la ventana de ETABS
          iStatus = $cSapModel_GetView(pSapModel, pcView)
191
          pWindow = 0
192
```

```
iStatus = $cView_RefreshWindow(pcView,pWindow, iRet)
193
          !run model capturado
194
195
          iStatus = $cSapModel_GetAnalyze(pSapModel, pAnalyze)
          iStatus = $cAnalyze_RunAnalysis(pAnalyze, iRet)
196
          1.....
197
          !llamando resultados
198
          !$OMP PARALLEL SECTIONS
199
          !$OMP SECTION
200
          call resulfor(ip,cd,fulx1,fuly1,cdt)
201
          !$OMP SECTION
202
          call resuldezl(ip,cd,dezlx1,dezly1,cdt)
203
          !$OMP END PARALLEL SECTIONS
204
          call resut(ip,ed,ef,pix,piy)
205
          ·----
206
          !DIR$ LOOP COUNT(128)
207
208
          do l=1,ip
             fulxf(o,l)=fulx1(l)
                                    ! fuerzas de cada disipador x-x
209
             fulyf(o,l)=fuly1(l) ! fuerzas de cada disipador y-y
210
211
             dezlxl(o,l)=dezlx1(l) ! dezplamientos de cada disipador x-x
             dezlyl(o,l)=dezly1(l) ! dezplamientos de cada disipador y-y
212
             pix1(o,l) = pix(l)
                                    ! derivas por pisos x-x
213
             piyl(o,l) = piy(l)
                                    ! derivas por pisos y-y
214
215
          enddo
216
       enddo
       !$OMP PARALLEL SECTIONS
217
       !$OMP SECTION
218
219
       !dir x-x
       call fuctobject(pix1,dezlxl,fulxf,calin,caf,fucb,limi,ip,ind)
220
221
       call algens(poblacion,calin,mutacion,cruza,ind,ip)
222
       call extracal(poblacion,Ce,alph,ind,ip)
223
       !$OMP SECTION
       !dir y-y
224
       call fuctobject(piy1,dezlyl,fulyf,caliny,cafy,fucby,limiy,ip,ind)
225
       call algens(matriz,caliny,mutacion,cruza,ind,ip)
226
       call extracal(matriz,Cey,alphy,ind,ip)
227
       !$OMP END PARALLEL SECTIONS
228
229
       1......
       pm=maxloc(calin)
230
       !pn=minloc(calin)
231
       pmy=maxloc(caliny)
232
       !pny=minloc(caliny)
233
    104 format(1x,I2,3x,F8.6,x,F8.2,2x,F4.2,x,F9.2,x,F8.6,x,F8.2,x,F4.2,x,
234
        F9.2)
235
    105 format(x, F6.2, 7x, F4.2, 3x, F9.5, 3x, F6.2, 5x, F4.2, 4x, F9.5)
        open(11, file='resulfinal.txt', position='APPEND')
236
        write(11,*) 'maximo_valor_del_eje_x-x_generacion:',ngen,'individuo:
237
```

	, pm
238	<pre>write(11,*) 'maximo_valor_del_eje_y-y_generacion:',ngen,'individuo:</pre>
	', pmy
239	<pre>write(11,*) 'pisodrift_xClink_xaph_xforzl_xdrift_y</pre>
	Clink_yaph_yforzl_y'
240	do i=1,10
241	<pre>write (11,104) i,pix1(pm,i),ce(pm,i),alph(pm,i),fulxf(pm,i),piy1</pre>
	<pre>(pmy,i),Cey(pmy,i),alphy(pmy,i),fulyf(pmy,i)</pre>
242	enddo
243	<pre>write(11,*) 'funcion_objetivo_x-x_and_y-y'</pre>
244	<pre>write(11,*) 'Vadrien_x_enedisl_x_funobj_xVadrien_y_enedisl_y_ funobj_y'</pre>
245	<pre>write(11,105) fucb(pm),caf(pm),calin(pm),fucby(pmy),cafy(pmy),</pre>
	caliny(pmy)
246	write (11,*) ''
247	! fuerzas maximas
248	<pre>write(11,*) 'limite_superior(x-x):',limi(1,2),'limite_inferior(x.x)</pre>
	:',limi(1,1)
249	<pre>write(11,*) 'limite_superior(y-y):',limiy(1,2),'limite_inferior(y-y</pre>
):',limiy(1,1)
250	<pre>write(11,*) 'pisoDESPxFUER_XDESPxFUER_y'</pre>
251	do i=1,ip
252	<pre>write(11,*) i,dezlxl(pm,i)*fulxf(pm,i),dezlyl(pmy,i)*fulyf(pmy,i</pre>
)
253	enddo
254	write (11,*) '%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
255	close(11)
256	end subroutine
257	
258	<pre>subroutine resut(ip,ed,et,pix,piy) use FIADC201C</pre>
259	use ETABS2016
260	integeru in i i k
201	Integer ip,i,j,k
202	integer(kind-INT_PTR_KIND()):: pSapObject_pSapModel_loginter_to_a
203	model object
264	integer(kind=TNT_PTR_KIND()):: nAnalyze Incinter to an analyze
265	integer(kind=INT_PTR_KIND()):: pAnalysisResults
200	pAnalysisResultsSetup Incinter to a setup object
266	integer(kind=4):: iStatus, iBet
267	<pre>integer(kind=4), parameter :: nDimCON = 1 !array dimension</pre>
268	<pre>integer(kind=4)::iNumberResults, iItemTvpe</pre>
269	real(kind=8):: dModValue
270	<pre>logical(kind=2):: bSelected</pre>
271	<pre>character(len=256):: cProgramPath, cModelPath, cNotes, cGUID , cCsys</pre>
```
type(SA_BOUNDS):: saBounds !bounds object defining for SafeArray
272
273
      integer(kind=INT_PTR_KIND()):: pPointElm , pObjSA, pElmSA, pLCaseSA,
          pStepTypeSA, pStepNumSA
274
      integer(kind=INT_PTR_KIND()):: pU1, pU2, pU3, pR1, pR2, pR3 !force
      ......
275
      integer:: join(ip) !enteros
276
      real(8):: rs,rsn !real
277
      real:: ed,ef
278
      279
280
      real(8):: pix(ip), piy(ip),pixf(3,ip),piyf(3,ip),pixf11(3,ip)
      281
      !initialize COM
282
      call COMInitialize(iStatus) !attach to a running instance of ETBAS
283
      call COMGetActiveObjectByProgID("CSI.ETABS2016.API.SapObject",
284
         pSapObject, iStatus)
285
      call COMQueryInterface(pSapObject, IID_cOAPI, pSapObject, iStatus)
         !sap object model
      iStatus = $cOAPI_GetSapModel(pSapObject, pSapModel)
286
287
      !asignando los punteros
      .....
288
                          saBounds % bound = 0
289
      saBounds % extent = 0
290
291
      pObjSA = SafeArrayCreate(VT_BSTR, nDimCON, saBounds)
      pElmSA = SafeArrayCreate(VT_BSTR, nDimCON, saBounds)
292
      pPointElm = SafeArrayCreate(VT_BSTR, nDimCON, saBounds)
293
      pLCaseSA = SafeArrayCreate(VT_BSTR, nDimCON, saBounds)
294
      pStepTypeSA = SafeArrayCreate(VT_BSTR, nDimCON, saBounds)
295
      pStepNumSA = SafeArrayCreate(VT_R8, nDimCON, saBounds)
296
      pU1 = SafeArrayCreate(VT_R8, nDimCON, saBounds)
297
298
      pU2 = SafeArrayCreate(VT_R8, nDimCON, saBounds)
      pU3 = SafeArrayCreate(VT_R8, nDimCON, saBounds)
299
      pR1 = SafeArrayCreate(VT_R8, nDimCON, saBounds)
300
      pR2 = SafeArrayCreate(VT_R8, nDimCON, saBounds)
301
      pR3 = SafeArrayCreate(VT_R8, nDimCON, saBounds)
302
      303
      iItemType = eItemTypeElm_ObjectElm
304
305
      bSelected = .TRUE.
      !extraer desplazamientos
306
      iStatus = $cSapModel_GetResults(pSapModel, pAnalysisResults)
307
      ·----
308
      open (11, FILE='pto_cm.txt')
309
      read (11,*) (join(i),i=1,ip) !numero de pisos
310
311
      close(11)
      ·----
312
      pixf=0
313
314
      piyf=0
```

315	pixf11=0
316	do k=1,3
317	if(k==1) then
318	cCsys = 'caselxx' !primer registro direc x-x
319	do i=1,ip
320	<pre>iStatus = \$cAnalysisResults_GetSetup(pAnalysisResults,</pre>
	pAnalysisResultsSetup)
321	iStatus = \$cAnalysisResultsSetup_DeselectAllCases
	AndCombosForOutput(pAnalysisResultsSetup, iRet)
322	iStatus = \$cAnalysisResultsSetup_SetCaseSelected ForOutput(
	pAnalysisResultsSetup,cCsys, bSelected, iRet)
323	!direccion x-x ul
324	<pre>write (cLoadPat, '(I3)') join(i)</pre>
325	iStatus = \$cAnalysisResults_JointDispl(pAnalysisResults,
	cloadPat, iItemType, iNumberResults, pObjSA, pElmSA,
	pLCaseSA, pStepTypeSA, pStepNumSA, pU1, pU2, pU3, pR1,
	pR2, pR3, iRet)
326	!saca el valor dezpla
327	<pre>iRet = SafeArrayGetElement(pU1,0, loc(dModValue))</pre>
328	rs = dModValue
329	<pre>iRet = SafeArrayGetElement(pU1,1, loc(dModValue))</pre>
330	rsn = dModValue
331	if(rs>=abs(rsn)) then
332	plx(l)=rs
333	else
334	plx(l)=abs(rsn)
335	endit nivf(1_i)_niv(i)
330	pix(1,1) = pix(1)
337	ellado
330	$c(sys = 'case2yy' cambiar number y_y$
340	$d_{0} = 1$ in
341	iStatus = \$cAnalysisResults GetSetun(nAnalysisResults)
011	nAnalysisResultsSetup)
342	iStatus = \$cAnalysisResultsSetup DeselectAllCases
012	AndCombosEorOutput(pAnalysisResultsSetup, iRet)
343	iStatus = \$cAnalvsisResultsSetup_SetCaseSelected ForOutput(
	pAnalvsisResultsSetup.cCsvs. bSelected. iRet)
344	<pre>write (cLoadPat, '(I3)') join(i)</pre>
345	iStatus = \$cAnalysisResults_JointDispl(pAnalysisResults,
	<pre>cloadPat, iItemType, iNumberResults, pObjSA, pElmSA,</pre>
	pLCaseSA, pStepTypeSA, pStepNumSA, pU1, pU2, pU3, pR1,
	pR2, pR3, iRet)
346	<pre>iRet = SafeArrayGetElement(pU1,0, loc(dModValue))</pre>
347	rs = dModValue
348	<pre>iRet = SafeArrayGetElement(pU1,1, loc(dModValue))</pre>

349	rsn = dModValue
350	<pre>if(rs>=abs(rsn)) then</pre>
351	pix(i)=rs
352	else
353	<pre>pix(i)=abs(rsn)</pre>
354	endif
355	<pre>pixf(2,i)=pix(i)</pre>
356	enddo
357	else if(k==3) then
358	<pre>cCsys = 'case3xx' !cambiar este registro x-x</pre>
359	do i=1,ip
360	<pre>iStatus = \$cAnalysisResults_GetSetup(pAnalysisResults,</pre>
	pAnalysisResultsSetup)
361	iStatus = \$cAnalysisResultsSetup_DeselectAllCases
	<pre>AndCombosForOutput(pAnalysisResultsSetup, iRet)</pre>
362	<pre>iStatus = \$cAnalysisResultsSetup_SetCaseSelected ForOutput(</pre>
	<pre>pAnalysisResultsSetup,cCsys, bSelected, iRet)</pre>
363	<pre>write (cLoadPat, '(I3)') join(i)</pre>
364	<pre>iStatus = \$cAnalysisResults_JointDispl(pAnalysisResults,</pre>
	cloadPat, iItemType, iNumberResults, pObjSA, pElmSA,
	pLCaseSA, pStepTypeSA, pStepNumSA, pU1, pU2, pU3, pR1,
	pR2, pR3, iRet)
365	<pre>iRet = SafeArrayGetElement(pU1,0, loc(dModValue))</pre>
366	rs = dModValue
367	<pre>iRet = SafeArrayGetElement(pU1,1, loc(dModValue))</pre>
368	rsn = dModValue
369	<pre>if(rs>=abs(rsn)) then</pre>
370	pix(i)=rs
371	else
372	<pre>pix(i)=abs(rsn)</pre>
373	endif
374	<pre>pixf(3,i)=pix(i)</pre>
375	enddo
376	endif
377	enddo
378	do i=1,3
379	do j=1,ip
380	<pre>if(j==1) then</pre>
381	<pre>pixfll(i,j) = pixf(i,j)/ed !derivas por pisos x-x</pre>
382	else
383	<pre>pixfll(i,j) = (pixf(i,j)-pixf(i,j-1))/ef</pre>
384	endif
385	enddo
386	enddo
387	do i=1,ip
388	<pre>pix(i) = maxval(pixf11(:.i))</pre>

389	enddo
390	do k=1,3
391	if(k==1) then
392	cCsys = 'caselyy' !cambiar este registro y-y
393	do i=1,ip
394	<pre>iStatus = \$cAnalysisResults_GetSetup(pAnalysisResults,</pre>
	pAnalysisResultsSetup)
395	iStatus = \$cAnalysisResultsSetup_DeselectAllCase
	<pre>sAndCombosForOutput(pAnalysisResultsSetup, iRet)</pre>
396	iStatus = \$cAnalysisResultsSetup_SetCaseSelected ForOutput
	<pre>(pAnalysisResultsSetup,cCsys, bSelected, iRet)</pre>
397	!direccion x-x ul
398	<pre>write (cLoadPat, '(I3)') join(i)</pre>
399	iStatus = \$cAnalysisResults_JointDispl(pAnalysisResults,
	cloadPat, iItemType, iNumberResults, pObjSA, pElmSA,
	pLCaseSA, pStepTypeSA, pStepNumSA, pU1, pU2, pU3, pR1,
	pR2, pR3, iRet)
400	!saca el valor dezpla
401	<pre>iRet = SafeArrayGetElement(pU2,0, loc(dModValue))</pre>
402	rs = dModValue
403	<pre>iRet = SafeArrayGetElement(pU2,1, loc(dModValue))</pre>
404	rsn = dModValue
405	<pre>if(rs>=abs(rsn)) then</pre>
406	piy(i)=rs
407	else
408	piy(i)=abs(rsn)
409	endif
410	piyf(1,i)=piy(i)
411	enddo
412	else if(k==2) then
413	cCsys = 'case2yy' !cambiar este registro y-y
414	do i=1,ip
415	<pre>iStatus = \$cAnalysisResults_GetSetup(pAnalysisResults,</pre>
	pAnalysisResultsSetup)
416	1Status = \$cAnalysisResultsSetup_DeselectAllCase
	SANDLOMDOSFORUUTPUT(PANalysisResultsSetup, iRet)
417	1Status = \$cAnalys1SResultsSetup_SetLaseSelected Foroutput
44.0	(pAnalysisResultsSetup, Clsys, DSelected, 1Ret)
418	write (cloadPat, (13)) join(1)
419	IStatus = \$CANALYSISRESULTS_JOINTDISpt(pANALYSISRESULTS,
	pl CaceSA pStepTypeSA pStepNumSA pll1 pll2 pll2 pD1
	plicasesa, psiepiypesa, psiepiyumsa, pui, puz, pu3, pRI,
490	$\mu \pi 2$, $\mu \pi 3$, $\pi \pi e I$)
420	rs = dModValue
421	iS = uiuuvalue
422	INCL = SaleAllayGetEtement(pu2,1, toc(umouvatue))

423	rsn = dModValue
424	<pre>if(rs>=abs(rsn)) then</pre>
425	piy(i)=rs
426	else
427	piy(i)=abs(rsn)
428	endif
429	<pre>piyf(2,i)=piy(i)</pre>
430	enddo
431	else if(k==3) then
432	cCsys = 'case3yy' !cambiar este registro y-y
433	do i=1,ip
434	<pre>iStatus = \$cAnalysisResults_GetSetup(pAnalysisResults,</pre>
	pAnalysisResultsSetup)
435	iStatus = \$cAnalysisResultsSetup_DeselectAllCase
	<pre>sAndCombosForOutput(pAnalysisResultsSetup, iRet)</pre>
436	iStatus = \$cAnalysisResultsSetup_SetCaseSelected ForOutput
	<pre>(pAnalysisResultsSetup,cCsys, bSelected, iRet)</pre>
437	<pre>write (cLoadPat, '(I3)') join(i)</pre>
438	iStatus = \$cAnalysisResults_JointDispl(pAnalysisResults,
	cloadPat, iItemType, iNumberResults, pObjSA, pElmSA,
	pLCaseSA, pStepTypeSA, pStepNumSA, pU1, pU2, pU3, pR1,
	pR2, pR3, iRet)
439	<pre>iRet = SafeArrayGetElement(pU2,0, loc(dModValue))</pre>
440	rs = dModValue
441	<pre>iRet = SafeArrayGetElement(pU2,1, loc(dModValue))</pre>
442	rsn = dModValue
443	<pre>if(rs>=abs(rsn)) then</pre>
444	piy(i)=rs
445	else
446	piy(i)=abs(rsn)
447	endif
448	p1yt(3,1)=p1y(1)
449	enddo
450	endit
451	enddo niwf11 0
452	
453	101 = 1,3
454	$ \begin{array}{c} \text{do } J=1,1p \\ \text{if}(i-1) \text{ then} \end{array} $
455	r_{i} r_{i
400	p_{1}
407	riv_{ij}
408	$p_{1} = (p_{1} + (1, j) - p_{1} + (1, j) - p_{1} + (1, j) - 1) = 0$
460	enddo
461	enddo
462	do i=1 in
-104	

```
piy(i) = maxval(pixf11(:,i))
463
        enddo
464
       end subroutine resut
465
466
       subroutine resulfor(ip,cd,fulx1,fuly1,cdt)
467
       use ETABS2016
468
       implicit none
469
       integer i, ip, cd, cdt
470
       .....
471
472
       integer(kind=INT_PTR_KIND()):: pSapObject, pSapModel, pAnalyze,
          pAnalysisResults, pAnalysisResultsSetup
       integer(kind=4):: iStatus, iRet, ite
473
       integer(kind=4), parameter:: nDimCON = 1 ! array dimension
474
       !punteros para los resultados
475
       integer(kind=4):: iNumberResults, iItemType, iCol
476
477
       real(kind=8):: dModValue
       logical(kind=2):: bSelected
478
       !RESULTADOS
479
480
       real(kind=8):: Sapforx(2,cdt),Sapfory(2,cdt),sapforx1(3,cdt),
          sapfory1(3,cdt),fulx(cdt),fuly(cdt),fulx1(ip),fuly1(ip)
       character(len=256):: cProgramPath, cModelPath, cNotes, cGUID, cCsys,
481
           cLoadPat
482
       type(SA_BOUNDS):: saBounds !bounds object defining for SafeArray
483
       integer(kind=INT_PTR_KIND()):: pPointElm, pObjSA, pElmSA, pLCaseSA,
          pStepTypeSA, pStepNumSA, pPSA
484
       integer(kind=INT_PTR_KIND()):: pV2SA, pV3SA, pTSA, pM2SA, pM3SA
       1.....
485
       call COMInitialize(iStatus)
486
       call COMGetActiveObjectByProgID("CSI.ETABS2016.API.SapObject",
487
          pSapObject, iStatus)
       call COMQueryInterface(pSapObject, IID_cOAPI, pSapObject, iStatus)
488
       iStatus = $cOAPI_GetSapModel(pSapObject, pSapModel)
489
       1.....
490
       saBounds  solved = 0
491
       saBounds %extent = 0
492
       pObjSA = SafeArrayCreate(VT_BSTR, nDimCON, saBounds)
493
       pElmSA = SafeArrayCreate(VT_BSTR, nDimCON, saBounds)
494
       pPointElm = SafeArrayCreate(VT_BSTR, nDimCON, saBounds)
495
       pLCaseSA = SafeArrayCreate(VT_BSTR, nDimCON, saBounds)
496
       pStepTypeSA = SafeArrayCreate(VT_BSTR, nDimCON, saBounds)
497
       pStepNumSA = SafeArrayCreate(VT_R8, nDimCON, saBounds)
498
       pPSA = SafeArrayCreate(VT_R8, nDimCON, saBounds)
499
       pV2SA = SafeArrayCreate(VT_R8, nDimCON, saBounds)
500
       pV3SA = SafeArrayCreate(VT_R8, nDimCON, saBounds)
501
       pTSA = SafeArrayCreate(VT_R8, nDimCON, saBounds)
502
       pM2SA = SafeArrayCreate(VT_R8, nDimCON, saBounds)
503
```

504	pM3SA = SafeArrayCreate(VT_R8, nDimCON, saBounds)
505	!extrayendo los resultados de los disipadores
506	iItemType = eItemTypeElm_ObjectElm
507	bSelected = .TRUE.
508	Sapforx=0; Sapfory=0; sapforx1=0; sapfory1=0
509	do i=1,3
510	iStatus = \$cSapModel_GetResults(pSapModel, pAnalysisResults)
511	if(i==1) then
512	cCsys = 'caselxx'
513	<pre>do iCol=1,cdt</pre>
514	!convierte a numero de iteraciones
515	<pre>write (cLoadPat, '(I2)') iCol</pre>
516	iStatus = \$cAnalysisResults_GetSetup(pAnalysisResults,
	pAnalysisResultsSetup)
517	iStatus = \$cAnalysisResultsSetup_DeselectAllCases
	AndCombosForOutput(pAnalysisResultsSetup, iRet)
518	iStatus = \$cAnalysisResultsSetup_SetCaseSelected ForOutput(
	<pre>pAnalysisResultsSetup,cCsys, bSelected, iRet)</pre>
519	!fuerza disipador positivo
520	iStatus = \$cAnalysisResults_LinkForce(pAnalysisResults,
	cLoadPat, iItemType, iNumberResults, pObjSA,pElmSA,
	pPointElm, pLCaseSA,pStepTypeSA, pStepNumSA, pPSA, pV2SA
	, pV3SA, pTSA, pM2SA, pM3SA,iRet)
521	!saca el valor de fuerza de los disi
522	<pre>iRet = SafeArrayGetElement(pPSA,0, loc(dModValue))</pre>
523	<pre>Sapforx(1,iCol) = dModValue</pre>
524	<pre>iRet = SafeArrayGetElement(pPSA,2, loc(dModValue))</pre>
525	<pre>Sapforx(2,iCol) = abs(dModValue)</pre>
526	<pre>sapforx1(1,iCol)=maxval(Sapforx(:,iCol))</pre>
527	enddo
528	else if(i==2) then
529	cCsys = 'case2xx'
530	do iCol=1,cdt
531	write (cLoadPat, '(I2)') iCol
532	<pre>iStatus = \$cAnalysisResults_GetSetup(pAnalysisResults,</pre>
	pAnalysisResultsSetup)
533	<pre>iStatus = \$cAnalysisResultsSetup_DeselectAllCases</pre>
	AndCombosForOutput(pAnalysisResultsSetup, iRet)
534	1Status = \$cAnalys1sResultsSetup_SetCaseSelected ForOutput(
	pAnalysisResultsSetup,cCsys, bSelected, iRet)
535	<pre>iStatus = \$cAnalysisResults_LinkForce(pAnalysisResults,</pre>
	cLoadPat, iltemiype, iNumberResults, pUbjSA,pElmSA,
	prointeim, pluasesa,pstepiypesa, pstepnumsa, pPSA, pV2SA
596	, pv_{3SA} , pi_{SA} , pm_{2SA} , pm_{3SA} , $lket$)
036 595	IREL = SateAllayGetetement(prSA, U, loc(driodValue)) $Sanforx(1, iCal) = dMadValue$
537	Saptorx(1,100) = amodvalue

538	<pre>iRet = SafeArrayGetElement(pPSA,2, loc(dModValue))</pre>
539	<pre>Sapforx(2,iCol) = abs(dModValue)</pre>
540	<pre>sapforx1(2,iCol)=maxval(Sapforx(:,iCol))</pre>
541	enddo
542	else if(i==3) then
543	cCsys = 'case3xx'
544	<pre>do iCol=1,cdt</pre>
545	<pre>write (cLoadPat, '(I2)') iCol</pre>
546	<pre>iStatus = \$cAnalysisResults_GetSetup(pAnalysisResults, pAnalysisResultsSetup)</pre>
547	<pre>iStatus = \$cAnalysisResultsSetup_DeselectAllCases AcdCarboxForOutput(cAnalysisResultsCature iDet)</pre>
	AndCombosForUutput(pAnalysisResultsSetup, 1Ret)
548	1Status = \$cAnalys1sResultsSetup_SetLaseSelected ForOutput(
	pAnalysisResultsSetup,clsys, bSelected, iRet)
549	<pre>1Status = \$cAnalysisResults_LinkForce(pAnalysisResults,</pre>
	cLoadPat, iitemiype, iNumberResults, pobjsA,petmsA,
	profitetill, pecasesa, psteprypesa, psteprullisa, prsa, pvzsa
EEO	, μ SSA, μ SSA, μ SSA, μ SSA, μ SSA, μ SSA, μ (ModValue))
551	Sanforx(1 i Col) = dModValue
552	iBet = SafeArrayGetElement(nPSA 2 loc(dModValue))
553	Sanforx(2, iCol) = abs(dModValue)
554	sapforx1(3 iCol) = abs(allowattic)
555	enddo
556	endif
557	enddo
558	do i=1.cdt
559	<pre>fulx(i)=maxval(sapforx1(:,i))</pre>
560	enddo
561	ite=0
562	<pre>do i=1,cdt,cd</pre>
563	ite=ite+1
564	<pre>fulx1(ite)=maxval(fulx(i:i+3))</pre>
565	enddo
566	! para la direccion 'y-y'
567	do i=1,3
568	ite=0
569	if(i==1) then
570	cCsys = 'caselyy'
571	<pre>do iCol=cdt+1,2*cdt</pre>
572	ite=ite+1
573	!convierte a numero de iteraciones
574	<pre>write (cLoadPat, '(I2)') iCol</pre>
575	<pre>iStatus = \$cAnalysisResults_GetSetup(pAnalysisResults,</pre>
	pAnalysisResultsSetup)
576	iStatus = \$cAnalysisResultsSetup_DeselectAllCases

	AndCombosForOutput(pAnalysisResultsSetup, iRet)
577	iStatus = \$cAnalysisResultsSetup_SetCaseSelected ForOutput(
	<pre>pAnalysisResultsSetup,cCsys, bSelected, iRet)</pre>
578	! fuerza disipador positivo
579	iStatus = \$cAnalysisResults_LinkForce(pAnalysisResults,
	cLoadPat, iItemType, iNumberResults, pObjSA,pElmSA,
	pPointElm, pLCaseSA,pStepTypeSA, pStepNumSA, pPSA, pV2SA
	, pV3SA, pTSA, pM2SA, pM3SA,iRet)
580	!saca el valor de fuerza de los disipadores
581	<pre>iRet = SafeArrayGetElement(pPSA,0, loc(dModValue))</pre>
582	Sapfory(1,ite) = dModValue
583	<pre>iRet = SafeArrayGetElement(pPSA,2, loc(dModValue))</pre>
584	<pre>Sapfory(2,ite) = abs(dModValue)</pre>
585	<pre>sapfory1(1,ite)=maxval(Sapfory(:,ite))</pre>
586	enddo
587	else if(i==2) then
588	cCsys = 'case2yy'
589	<pre>do iCol=cdt+1,2*cdt</pre>
590	ite=ite+1
591	<pre>write (cLoadPat, '(I2)') iCol</pre>
592	iStatus = \$cAnalysisResults_GetSetup(pAnalysisResults,
	pAnalysisResultsSetup)
593	iStatus = \$cAnalysisResultsSetup_DeselectAllCases
	AndCombosForOutput(pAnalysisResultsSetup, iRet)
594	iStatus = \$cAnalysisResultsSetup_SetCaseSelected ForOutput(
	pAnalysisResultsSetup,cCsys, bSelected, iRet)
595	<pre>iStatus = \$cAnalysisResults_LinkForce(pAnalysisResults,</pre>
	cLoadPat, iItemType, iNumberResults, pObjSA,pElmSA,
	pPointElm, pLCaseSA,pStepTypeSA, pStepNumSA, pPSA, pV2SA
	, pv3SA, pISA, pM2SA, pM3SA, iRet)
596	<pre>1Ret = SateArrayGetElement(pPSA,0, loc(dModValue)) Conform(1, its) = dModValue</pre>
597	Saptory(1,1te) = amoavatue
598	IRet = SaleArrayGetEtement(prSA, 2, tot(dModVatue))
599	saptory(2, ite) = abs(unouvatue) $saptory(1/2, ite) = maxy(2)(Saptory(1, ite))$
601	andda
602	else if(i-3) then
602	c(sys = c(sse3)w')
604	d_0 i(o)=cdt+1 2*cdt
605	ite=ite+1
606	write (cLoadPat. '(I2)') iCol
607	iStatus = \$cAnalysisResults GetSetup(pAnalysisResults.
501	pAnalysisResultsSetup)
608	iStatus = \$cAnalvsisResultsSetup_DeselectAllCases
	AndCombosForOutput(pAnalysisResultsSetup, iRet)
609	iStatus = \$cAnalysisResultsSetup SetCaseSelected ForOutput(

	pAnalysisResultsSetup,cCsys, bSelected, iRet)
610	iStatus = \$cAnalysisResults_LinkForce(pAnalysisResults,
	cLoadPat, iItemType, iNumberResults, pObjSA,pElmSA,
	pPointElm, pLCaseSA,pStepTypeSA, pStepNumSA, pPSA, pV2SA
	, pV3SA, pTSA, pM2SA, pM3SA,iRet)
611	<pre>iRet = SafeArrayGetElement(pPSA,0, loc(dModValue))</pre>
612	<pre>Sapfory(1,ite) = dModValue</pre>
613	<pre>iRet = SafeArrayGetElement(pPSA,2, loc(dModValue))</pre>
614	<pre>Sapfory(2,ite) = abs(dModValue)</pre>
615	<pre>sapfory1(3,ite)=maxval(Sapfory(:,ite))</pre>
616	enddo
617	endif
618	enddo
619	do i=1,cdt
620	<pre>fuly(i)=maxval(sapfory1(:,i))</pre>
621	enddo
622	ite=0
623	<pre>do i=1,cdt,cd</pre>
624	ite=ite+1
625	<pre>fuly1(ite)=maxval(fuly(i:i+3))</pre>
626	enddo
627	end subroutine resulfor
628	
629	<pre>subroutine resuldezl(ip,cd,dezlx1,dezly1,cdt)</pre>
630	use ETABS2016
631	implicit none
632	<pre>integer i,ip,cd,cdt</pre>
633	·
634	<pre>integer(kind=INT_PTR_KIND()):: pSap0bject, pSapModel, pAnalyze,</pre>
	pAnalysisResults, pAnalysisResultsSetup
635	integer(kind=4):: iStatus, iRet, ite
636	<pre>integer(kind=4), parameter:: nDimCON = 1 ! array dimension</pre>
637	!punteros para los resultados
638	<pre>integer(kind=4):: iNumberResults, iItemlype, iCol </pre>
639	real(kind=8):: dModValue
640	logical(kind=2):: DSelected
641	!Resultados
642	real(kind=8):: Saptorx(2,cdt), Saptory(2,cdt), saptorx1(3,cdt),
	saptory1(3,cdt), deztx(cdt),dezty(cdt),deztx1(1p),dezty1(1p)
643	<pre>character(len=250):: crrogramPath, cModelPath, cNotes, CGUID, cLsys, character(len=250):: crrogramPath, cModelPath, cNotes, CGUID, cLsys,</pre>
	CLUGUYGL
644	<pre>ipteger(kind_INT_DTD_KIND()):: pobiCA_place.place</pre>
645	pStopNumSA lforce
040	, pstephullisa !lorce
040	Integer(KINU=INT_FIK_KINU()):: pu1, pu2, pU3, pK1, pK2, pK3

```
647
       |------
       call COMInitialize(iStatus)
648
649
       call COMGetActiveObjectByProgID("CSI.ETABS2016.API.SapObject",
           pSapObject, iStatus)
       call COMQueryInterface(pSapObject, IID_cOAPI, pSapObject, iStatus)
650
       iStatus = $cOAPI_GetSapModel(pSapObject, pSapModel)
651
       1......
652
       !asignando los punteros
653
       saBounds % bound = 0
654
655
       saBounds % extent = 0
       pObjSA = SafeArrayCreate(VT_BSTR, nDimCON, saBounds)
656
       pElmSA = SafeArrayCreate(VT_BSTR, nDimCON, saBounds)
657
       pLCaseSA = SafeArrayCreate(VT_BSTR, nDimCON, saBounds)
658
       pStepTypeSA = SafeArrayCreate(VT_BSTR, nDimCON, saBounds)
659
       pStepNumSA = SafeArrayCreate(VT_R8, nDimCON, saBounds)
660
661
       pU1 = SafeArrayCreate(VT_R8, nDimCON, saBounds)
       pU2 = SafeArrayCreate(VT_R8, nDimCON, saBounds)
662
       pU3 = SafeArrayCreate(VT_R8, nDimCON, saBounds)
663
664
       pR1 = SafeArrayCreate(VT_R8, nDimCON, saBounds)
       pR2 = SafeArrayCreate(VT_R8, nDimCON, saBounds)
665
       pR3 = SafeArrayCreate(VT_R8, nDimCON, saBounds)
666
       1 . . . . . . . . .
667
668
       iItemType = eItemTypeElm_ObjectElm
       bSelected = .TRUE.
669
       Sapforx=0; Sapfory=0; sapforx1=0; sapfory1=0
670
671
       do i=1,3
          iStatus = $cSapModel_GetResults(pSapModel, pAnalysisResults)
672
673
          if(i==1) then
674
             cCsys = 'case1xx'
675
             do iCol=1,cdt
                write (cLoadPat, '(I2)') iCol
676
                iStatus = $cAnalysisResults_GetSetup(pAnalysisResults,
677
                    pAnalysisResultsSetup)
                iStatus = $cAnalysisResultsSetup_DeselectAllCases
678
                    AndCombosForOutput(pAnalysisResultsSetup, iRet)
                iStatus = $cAnalysisResultsSetup_SetCaseSelected ForOutput(
679
                    pAnalysisResultsSetup,cCsys, bSelected, iRet)
                iStatus = $cAnalysisResults_LinkDeformation(
680
                    pAnalysisResults, cLoadPat, iItemType, iNumberResults,
                    pObjSA, pElmSA, pLCaseSA, pStepTypeSA, pStepNumSA, pU1,
                    pU2, pU3, pR1, pR2, pR3, iRet)
                iRet = SafeArrayGetElement(pU1,0, loc(dModValue))
681
                Sapforx(1,iCol) = dModValue
682
                iRet = SafeArrayGetElement(pU1,1, loc(dModValue))
683
                Sapforx(2,iCol) = abs(dModValue)
684
                sapforx1(1,iCol)=maxval(Sapforx(:,iCol))
685
```

686	enddo
687	else if(i==2) then
688	cCsys = 'case2xx'
689	do iCol=1,cdt
690	<pre>write (cLoadPat, '(I2)') iCol</pre>
691	<pre>iStatus = \$cAnalysisResults_GetSetup(pAnalysisResults,</pre>
	pAnalysisResultsSetup)
692	iStatus = \$cAnalysisResultsSetup_DeselectAllCases
	<pre>AndCombosForOutput(pAnalysisResultsSetup, iRet)</pre>
693	iStatus = \$cAnalysisResultsSetup_SetCaseSelected ForOutput(
	<pre>pAnalysisResultsSetup,cCsys, bSelected, iRet)</pre>
694	<pre>iStatus = \$cAnalysisResults_LinkDeformation(</pre>
	pAnalysisResults, cLoadPat, iItemType, iNumberResults,
	pObjSA, pElmSA, pLCaseSA, pStepTypeSA, pStepNumSA, pU1,
	pU2, pU3, pR1, pR2, pR3, iRet)
695	<pre>iRet = SafeArrayGetElement(pU1,0, loc(dModValue))</pre>
696	<pre>Sapforx(1,iCol) = dModValue</pre>
697	<pre>iRet = SafeArrayGetElement(pU1,1, loc(dModValue))</pre>
698	<pre>Sapforx(2,iCol) = abs(dModValue)</pre>
699	<pre>sapforx1(2,iCol)=maxval(Sapforx(:,iCol))</pre>
700	enddo
701	else if(i==3) then
702	cCsys = 'case3xx'
703	do iCol=1,cdt
704	<pre>write (cLoadPat, '(I2)') iCol</pre>
705	iStatus = \$cAnalysisResults_GetSetup(pAnalysisResults,
	pAnalysisResultsSetup)
706	iStatus = \$cAnalysisResultsSetup_DeselectAllCases
	AndCombosForOutput(pAnalysisResultsSetup, iRet)
707	iStatus = \$cAnalysisResultsSetup_SetCaseSelected ForOutput(
	pAnalysisResultsSetup,cCsys, bSelected, iRet)
708	iStatus = \$cAnalysisResults_LinkDeformation(
	pAnalysisResults, cLoadPat, iItemType, iNumberResults,
	pObjSA, pElmSA, pLCaseSA, pStepTypeSA, pStepNumSA, pU1,
	pU2, pU3, pR1, pR2, pR3, 1Ret)
709	<pre>iRet = SafeArrayGetElement(pU1,0, loc(dModValue))</pre>
710	Saptorx(1,100) = dModValue
711	<pre>iRet = SafeArrayGetElement(pU1,1, loc(dModValue))</pre>
712	Saptorx(2,1001) = abs(dModValue)
713	<pre>saptorx1(3,1Col)=maxval(Saptorx(:,1Col)) onddo</pre>
(14	enduu
(15 710	enuti
(10 717	do i-1 cdt
(1) 718	dez[x(i)=maxya](sanfory1(: i))
710	
1121	CIUUV

720	ite=0
721	<pre>do i=1,cdt,cd</pre>
722	ite=ite+1
723	<pre>dezlx1(ite)=maxval(dezlx(i:i+3))</pre>
724	enddo
725	! para la direccion 'y-y'
726	do i=1,3
727	ite=0
728	if(i==1) then
729	cCsys = 'caselyy'
730	<pre>do iCol=cdt+1,2*cdt</pre>
731	ite=ite+iCol/iCol
732	<pre>write (cLoadPat, '(I2)') iCol</pre>
733	iStatus = \$cAnalysisResults_GetSetup(pAnalysisResults,
	pAnalysisResultsSetup)
734	iStatus = \$cAnalysisResultsSetup_DeselectAllCases
	AndCombosForOutput(pAnalysisResultsSetup, iRet)
735	iStatus = \$cAnalysisResultsSetup_SetCaseSelected ForOutput(
	pAnalysisResultsSetup,cCsys, bSelected, iRet)
736	iStatus = \$cAnalysisResults_LinkDeformation(
	pAnalysisResults, cLoadPat, iItemType, iNumberResults,
	pObjSA, pElmSA, pLCaseSA, pStepTypeSA, pStepNumSA, pU1,
	pU2, pU3, pR1, pR2, pR3, iRet)
737	<pre>iRet = SafeArrayGetElement(pU1,0, loc(dModValue))</pre>
738	Sapfory(1,ite) = dModValue
739	<pre>iRet = SafeArrayGetElement(pU1,1, loc(dModValue))</pre>
740	Saptory(2,ite) = abs(dModValue)
741	<pre>saptory1(1,1te)=maxval(Saptory(:,1te))</pre>
742	enddo
743	else if(1==2) then
744	ccsys = casezyy
745	
746	$\frac{1}{1000} = 1000 + 10000 + 10000 + 1000 + 1000 + 1000 + 1000 + 1000 + 1000 +$
747	WILLE (CLOAUPAL, (12)) ICOL
748	s_{a}
740	$\frac{1}{2}$
749	$\Delta ndCombas EarOutput(nAnalysis PosultsSetup_besetectAttcases)$
750	istatus – $c_{nalveis}$
750	nAnalysisResultsSetup_SetCaseSetected iPet)
751	iStatus = $cAnalysisResults LinkDeformation($
751	nAnalysisResults cloadPat iItemType iNumberResults
	nOhiSA, $pFlmSA$ of CaseSA of StenTypeSA of StenNumSA of 11
	pi =
752	iRet = SafeArrayGetFlement(nU1.0.loc(dModValue))
753	sapfory(1, ite) = dModValue

754	<pre>iRet = SafeArrayGetElement(pU1,1, loc(dModValue))</pre>
755	<pre>sapfory(2,ite) = abs(dModValue)</pre>
756	<pre>sapfory1(2,ite)=maxval(Sapfory(:,ite))</pre>
757	enddo
758	else if(i==2) then
759	cCsys = 'case3yy'
760	<pre>do iCol=cdt+1,2*cdt</pre>
761	<pre>ite=ite+iCol/iCol</pre>
762	<pre>write (cLoadPat, '(I2)') iCol</pre>
763	<pre>iStatus = \$cAnalysisResults_GetSetup(pAnalysisResults,</pre>
	pAnalysisResultsSetup)
764	iStatus = \$cAnalysisResultsSetup_DeselectAllCases
	<pre>AndCombosForOutput(pAnalysisResultsSetup, iRet)</pre>
765	iStatus = \$cAnalysisResultsSetup_SetCaseSelected ForOutput(
	pAnalysisResultsSetup,cCsys, bSelected, iRet)
766	iStatus = \$cAnalysisResults_LinkDeformation(
	pAnalysisResults, cLoadPat, iItemType, iNumberResults,
	pObjSA, pElmSA, pLCaseSA, pStepTypeSA, pStepNumSA, pU1,
	pU2, pU3, pR1, pR2, pR3, iRet)
767	<pre>iRet = SafeArrayGetElement(pU1,0, loc(dModValue))</pre>
768	<pre>Sapfory(1,ite) = dModValue</pre>
769	<pre>iRet = SafeArrayGetElement(pU1,1, loc(dModValue))</pre>
770	<pre>Sapfory(2,ite) = abs(dModValue)</pre>
771	<pre>sapfory1(3,ite)=maxval(Sapfory(:,ite))</pre>
772	enddo
773	endif
774	enddo
775	do 1=1,cdt
776	<pre>dezly(1)=maxval(saptory1(:,1))</pre>
777	enado
778	lte=U
779	
780	1(e-1(e+1))
789	enddo
783	call COMUninitialize()
784	end subroutine resuldez
785	
786	<pre>subroutine fuctobiect(deznt.dezlink.maxf.calin.caf.fucb.limi.ip.ind)</pre>
787	implicit none
788	integer:: ip,ind
789	<pre>real(8):: dezent(ind,ip),driftcal(ind,ip),dezlink(ind,ip),maxf(ind,</pre>
	ip),lim(ind,2),limi(1,2),li,ls
790	<pre>real:: energ(ip),caf(ind),fucb(ind),calin(ind)</pre>
791	<pre>real:: acum,maxx,minn !dezent>deriva-piso,driftcal>VDE,dezlink</pre>
	>dezdisip,maxf>maxfdisip

```
integer:: i,j,icl,pm(1)
792
       1......
793
794
       do i=1, ind
          do j=1,ip
795
              if(dezent(i,j)<=0.007) driftcal(i,j)=10*(dezent(i,j)/.007)</pre>
796
              driftcal(i,j)=9*((0.009-dezent(i,j))/.007)
797
              if(dezent(i,j)>0.009) driftcal(i,j)=0
798
           enddo
799
           maxx = 0
800
           energ(1) = 0
801
802
           energ(ip) = 0
           do j=2,ip-1
803
              energ(j) = maxf(i,j)*dezlink(i,j)
804
               maxx = maxx+energ(j)
805
           enddo
806
807
           caf(i) = 0
           li = 0.09375*maxx
808
           ls = 0.15625 * maxx
809
810
           lim(i,1) = li
          lim(i,2) = ls
811
          do j = 2, ip-1
812
              icl=0
813
814
              if(li<=energ(j) .and. energ(j)<=ls) icl=1</pre>
              if(icl==1) caf(i)=caf(i)+1
815
          enddo
816
       enddo
817
       ·····
818
819
       do i=1,ind
820
          caf(i)=caf(i)/8*.3+.7
821
          calin(i)=0
822
           calin(i)=calin(i)+sum(driftcal(i,:))
           fucb(i)=calin(i)
823
          calin(i)=calin(i)*caf(i)
824
       enddo
825
       pm=maxloc(calin)
826
       limi(1,:)=lim(pm(1),:)
827
828
       end subroutine fuctobject
829
       subroutine extracal(matriz,Ce,alph,ind,ip)
830
       implicit none
831
       integer:: ind,ip,o,i,m,lk=1
832
       integer:: matriz(ind,9*ip),two(6),two1(3)
833
       real:: linkalfa(2,ip)
834
835
       real:: cmin=0,cmax,range
       real:: Ce(ind,ip),alph(ind,ip)
836
837
        1.........
```

838	range=cmax-cmin
839	do i=0,5
840	two(6-i)=2**i
841	enddo
842	<pre>twol=two(4:6)</pre>
843	do o=1,ind
844	m=0
845	do i=1,9*ip,9
846	m=m+1
847	linkalfa(1,m) =sum(two*matriz(o,i:i+5))+1
848	linkalfa(1,m)=linkalfa(1,m)+cmin
849	<pre>if (lk==1) linkalfa(2,m)=0.60</pre>
850	Ce(o,m)=linkalfa(1,m)
851	alph(o,m)=linkalfa(2,m)
852	enddo
853	enddo
854	end subroutine extracal
855	
856	<pre>subroutine intrudatos(ngen,ed,ef,ip,cd,cdt,mutacion,cruza,ind,</pre>
	poblacion,matriz)
857	use ETABS2016
858	implicit none
859	<pre>integer(kind=4), parameter:: nDimCON = 1 ! array dimension</pre>
860	<pre>integer(kind=4):: i,j,ip,n,m,l,ngen,ind,pm(1),pn(1),pmy(1),pny(1) ! iteradores</pre>
861	<pre>integer(kind=4):: pWindow,iItemType,iStatus,iUnits, iRet</pre>
862	<pre>integer(kind=INT_PTR_KIND()):: pcView,pSapObject, pSapModel,pAnalyze ,pPropLink</pre>
863	<pre>character(len=256):: cProgramPath, cModelPath ,cNotes, cGUID</pre>
864	<pre>real(kind=8):: KeModValue, CeModValue, KModValue, CModValue, CexpModValue,pDJ2, pDJ3</pre>
865	<pre>logical(kind=2):: DOFModValue, NonModValue, FixModValue</pre>
866	<pre>type(SA_BOUNDS):: saBounds ! bounds object defining for SafeArray</pre>
867	<pre>integer(kind=INT_PTR_KIND()):: pD0F, pFixed, pNonLinear, pKe, pCe,</pre>
	pK, pC, pCexp !property modi
868	<pre>character(len=256):: clink,damp,gitex</pre>
869	<pre>real:: Cey(ind,ip),alphy(ind,ip),Ce(ind,ip), alph(ind,ip)</pre>
870	<pre>real(8):: pix(ip), piy(ip),pix1(ind,ip),piy1(ind,ip),limi(1,2),limiy (1,2) !desplazamientos por pisos</pre>
871	<pre>real(8):: fulx1(ip),fuly1(ip),fulxf(ind,ip),fulyf(ind,ip) !fuerzas de cada disipador</pre>
872	<pre>real(8):: dezlx1(ip),dezly1(ip),dezlxl(ind,ip),dezlyl(ind,ip) ! dezplamientos de cada disipador</pre>
873	real:: calin(ind).caliny(ind).caf(ind).fuch(ind) cafv(ind) fuchy(ind)
010)
874	integer:: ji,cat,ca

```
real:: mutacion,cruza,cke(2*ip,2) ,ed,ef
875
876
       integer:: poblacion(ind,9*ip),matriz(ind,9*ip)
877
       ·----
878
       call COMInitialize(iStatus)
       call COMGetActiveObjectByProgID("CSI.ETABS2016.API.SapObject",
879
          pSapObject, iStatus)
       call COMQueryInterface(pSapObject, IID_cOAPI, pSapObject, iStatus)
880
       iStatus = $cOAPI_GetSapModel(pSapObject, pSapModel)
881
       !desbloquear la llave
882
       iStatus = $cSapModel_SetModelIsLocked(pSapModel,.False., iRet)
883
       iUnits = 14
884
       iStatus = $cSapModel_SetPresentUnits(pSapModel, iUnits, iRet)
885
       886
       cNotes = ''
887
       cGUID = ''
888
889
       pDJ2 = 1.
       pDJ3 = 0.
890
       saBounds % bound = 0
891
892
       saBounds % extent = 6
       pDOF = SafeArrayCreate(VT_BOOL, nDimCON, saBounds)
893
       pNonLinear = SafeArrayCreate(VT_B00L, nDimCON, saBounds)
894
       pFixed = SafeArrayCreate(VT_BOOL, nDimCON, saBounds)
895
896
       pKe = SafeArrayCreate(VT_R8, nDimCON, saBounds)
       pCe = SafeArrayCreate(VT_R8, nDimCON, saBounds)
897
       pK = SafeArrayCreate(VT_R8, nDimCON, saBounds)
898
       pC = SafeArrayCreate(VT_R8, nDimCON, saBounds)
899
       pCExp = SafeArrayCreate(VT_R8, nDimCON, saBounds)
900
       901
902
       !$OMP PARALLEL SECTIONS
903
       !$OMP SECTION
904
       !dir x-x
       call extracal(poblacion,Ce,alph,ind,ip)
905
       !$OMP SECTION
906
       !dir y-y
907
       call extracal(matriz,Cey,alphy,ind,ip)
908
       !$OMP END PARALLEL SECTIONS
909
910
       |-----
       do n=1, ind
911
          do concurrent(j=1:ip*2)
912
             if(j<=ip) then</pre>
913
                cke(j,1)=Ce(n,j)
914
                cke(j,2)=alph(n,j)
915
             else
916
917
                j1=j-ip
                cke(j,1) = Cey(n,j1)
918
919
                cke(j,2) = alphy(n,j1)
```

920	endit
921	enddo
922	iStatus = \$cSapModel_SetModelIsLocked(pSapModel,.False., iRet)
923	do j=1,ip*2
924	DOFModValue = .TRUE.
925	NonModValue = $.TRUE$.
926	KeModValue = 0
927	CeModValue = 0
928	KModValue = 200000
929	CModValue = cke(j,1)
930	CexpModValue = cke(j,2)
931	do i=0,0
932	<pre>iRet = SafeArrayPutElement(pDOF,i, loc(DOFModValue))</pre>
933	<pre>iRet = SafeArrayPutElement(pNonLinear,i, loc(NonModValue))</pre>
934	<pre>iRet = SafeArrayPutElement(pKe,i, loc(KeModValue))</pre>
935	<pre>iRet = SafeArrayPutElement(pCe,i, loc(CeModValue))</pre>
936	<pre>iRet = SafeArrayPutElement(pK,i, loc(KModValue))</pre>
937	<pre>iRet = SafeArrayPutElement(pC,i, loc(CModValue))</pre>
938	<pre>iRet = SafeArrayPutElement(pCExp,i, loc(CexpModValue))</pre>
939	enddo
940	DOFModValue = .FALSE.
941	NonModValue = .FALSE.
942	FixModValue = .FALSE.
943	KeModValue = 0
944	CeModValue = 0
945	KModValue = 0
946	CModValue = 0
947	CexpModValue = 0
948	do i=1,5
949	<pre>iRet = SafeArrayPutElement(pDOF, i, loc(DOFModValue))</pre>
950	<pre>iRet = SafeArrayPutElement(pNonLinear, i, loc(NonModValue))</pre>
951	<pre>iRet = SafeArrayPutElement(pFixed, i, loc(FixModValue))</pre>
952	<pre>iRet = SafeArrayPutElement(pKe, i, loc(KeModValue))</pre>
953	<pre>iRet = SafeArrayPutElement(pCe, i, loc(CeModValue))</pre>
954	<pre>iRet = SafeArrayPutElement(pK, i, loc(KModValue))</pre>
955	<pre>iRet = SafeArrayPutElement(pC, i, loc(CModValue))</pre>
956	<pre>iRet = SafeArrayPutElement(pCExp, i, loc(CexpModValue))</pre>
957	enddo
958	
959	1†(j<=1p) then
960	write (clink, '(12)') j
961	gitex=adjust(clink)
962	<pre>damp = 'dispx_'//trim(gitex)//''</pre>
963	else
964	<pre>write (clink, '(12)') abs(1p-j)</pre>
965	gltex=adjustl(clink)

966	<pre>damp = 'dispy_'//trim(gitex)//''</pre>
967	endif
968	· · · · · · · · · · · · · · · · · · ·
969	iStatus = \$cSapModel_GetPropLink(pSapModel, pPropLink)
970	iStatus = \$cPropLink_SetDamper(pPropLink, damp,pDOF, pFixed,
	pNonLinear, pKe, pCe, pK, pC, pCExp,pDJ2,pDJ3,cNotes,cGUID,
	iRet)
971	enddo
972	!
973	!actualizando la ventana de ETABS
974	iStatus = \$cSapModel_GetView(pSapModel, pcView)
975	pWindow = 0
976	iStatus = \$cView_RefreshWindow(pcView,pWindow, iRet)
977	!
978	!corriendo modelo
979	iStatus = \$cSapModel_GetAnalyze(pSapModel, pAnalyze)
980	iStatus = \$cAnalyze_RunAnalysis(pAnalyze, iRet)
981	
982	!llamando resultados
983	\$000 PARALLEL SECTIONS
984	\$0MP SECTION
985	call resultor(1p,cd,tulx1,tuly1,cdt)
986	<pre>!\$UMP SECTION</pre>
987	
988	soll result (in ed. of nix nix)
989	Catt resut(ip,ed,er,pix,piy)
990	do l-1 in
991	$fulxf(n l)=fulxl(l) \qquad l fuerzas de cada disinador x-x$
992 003	fulvf(n l)=fulv1(l) fuerzas de cada disipador x-x
994	dezlxl(n l)=dezlxl(l) / dezplamientos de cada disipador x-x
995	dez(x)(n,t) = dez(x)(t) + dezptamientos de cada disipador x x
996	p(x)(n, 1) = p(x(1))! derivas por pisos x-x
997	piv1(n,l) = piv(l) ! derivas por pisos v-v
998	enddo
999	enddo
1000	!programacion paralelo
1001	!\$OMP PARALLEL SECTIONS
1002	!\$OMP SECTION
1003	!dir x-x
1004	<pre>call fuctobject(pix1,dezlxl,fulxf,calin,caf,fucb,limi,ip,ind)</pre>
1005	<pre>call algens(poblacion,calin,mutacion,cruza,ind,ip)</pre>
1006	<pre>call extracal(poblacion,Ce,alph,ind,ip)</pre>
1007	!\$OMP SECTION
1008	!dir y-y
1009	<pre>call fuctobject(piy1,dezlyl,fulyf,caliny,cafy,fucby,limiy,ip,ind)</pre>

1010	<pre>call algens(matriz,caliny,mutacion,cruza,ind,ip)</pre>
1011	<pre>call extracal(matriz,Cey,alphy,ind,ip)</pre>
1012	!\$OMP END PARALLEL SECTIONS
1013	· · · · · · · · · · · · · · · · · · ·
1014	pm=maxloc(calin)
1015	<pre>!pn=minloc(calin)</pre>
1016	<pre>pmy=maxloc(caliny)</pre>
1017	<pre>!pny=minloc(caliny)</pre>
1018	104 format(1x,I2,3x,F8.6,x,F8.2,2x,F4.2,x,F9.2,x,F8.6,x,F8.2,x,F4.2,x,
	F9.2)
1019	105 format(x,F6.2,7x,F4.2,3x,F9.5,3x,F6.2,5x,F4.2,4x,F9.5)
1020	<pre>open(11,file='resulfinal.txt',position='APPEND')</pre>
1021	<pre>write(11,*) 'maximo_valor_del_eje_x-x_generacion:',ngen,'individuo:</pre>
	',pm
1022	<pre>write(11,*) 'maximo_valor_del_eje_y-y_generacion:',ngen,'individuo:</pre>
	', pmy
1023	write(11,*) 'pisodrift_xClink_xaph_xforzl_xdrift_y
	Clink_yaph_yforzl_y'
1024	do i=1,10
1025	<pre>write (11,104) i,pix1(pm,i),ce(pm,i),alph(pm,i),fulxf(pm,i),piy1</pre>
	<pre>(pmy,i),Cey(pmy,i),alphy(pmy,i),fulyf(pmy,i)</pre>
1026	enddo
1027	<pre>write(11,*) 'funcion_objetivo_x-x_and_y-y'</pre>
1028	<pre>write(11,*) 'Vadrien_x_enedisl_x_funobj_xVadrien_y_enedisl_y_</pre>
	funobj_y'
1029	<pre>write(11,105) fucb(pm),caf(pm),calin(pm),fucby(pmy),cafy(pmy),</pre>
	caliny(pmy)
1030	write (11,*) ''
1031	! fuerzas maximas
1032	<pre>write(11,*) 'limite_superior(x-x):',limi(1,2),'limite_inferior(x.x)</pre>
	:', limi(1,1)
1033	<pre>write(II,*) 'limite_superior(y-y):',limiy(I,2),'limite_inferior(y-y),'limite_inferior(y-y)</pre>
):', limiy(1,1)
1034	Write(II,*) 'pisoUESPXFUER_XUESPXFUER_Y'
1035	00 1=1,1p
1036	write(ii,*) i,deztxt(pm,1)*TutxT(pm,1),deztyt(pmy,1)*TutyT(pmy,1)
1097	, ondo
1037	$\frac{c_{\text{Huu}}}{v_{\text{Hu}}} (11 +) ' $
1020	wille (ii) $\sim 0.0000000000000000000000000000000000$
1040	end subroutine
1040	Cha Sabrouttie

Anexos E Detalle de secciones finales

En la siguiente pagina se adjuntan los detalles de las secciones de la Edificación.

