UNIVERSIDAD NACIONAL DE HUANCAVELICA

(Creada por Ley Nº 25265)

FACULTAD DE CIENCIAS DE INGENIERÍA
ESCUELA ACADÉMICO PROFESIONAL DE CIVIL (HUANCAVELICA)

TESIS

"INTERACCIÓN SÍSMICA SUELO - ESTRUCTURA EN LA EDIFICACIÓN DE LA RESIDENCIA ESTUDIANTIL DE LA UNIVERSIDAD NACIONAL DE HUANCAVELICA"

LÍNEA DE INVESTIGACIÓN:
INGENIERÍA ESTRUCTURAL
INTERACCIÓN SUELO ESTRUCTURA

PARA OPTAR EL TÍTULO PROFESIONAL DE: INGENIERO CIVIL

PRESENTADO POR LOS BACHILLERES:
OLARTE BREÑA, Iván Marino
SÁNCHEZ CHOQUE, Romel Enrique

ASESOR:
Ing. CABALLERO SÁNCHEZ, Omar

HUANCAVELICA - PERÚ 2014

UNIVERSIDAD NACIONAL DE HUANCAVELICA FACULTAD DE CIENCIAS DE INGENIERÍA

ACTA DE SUSTENTACIÓN DE TESIS

En el Auditórium de la Facultad de Ciencias de Ingeniería, a los 06 días del mes de febrero del año 2014, a horas 3:00 p.m, se reunieron los miembros del Jurado Calificador conformado por los siguientes: Ing. Marco Antonio LOPEZ BARRANTES (PRESIDENTE), Ing. Carlos GASPAR PACO (SECRETARIO), Ing. Hugo Rúben LUJAN JERI (VOCAL). Lic. Eleuterio Martín ALCANTARA ESPINOZA (ACCESITARIO), designados con la Resolución de Decano N° 347-2013-FCI-UNH, de fecha 13 de setiembre del 2013, y ratificados con la Resolución de Decano N° 014-2014-FCI-UNH de fecha 30 de enero del 2014, a fin de proceder con la evaluación y calificación de la sustentación del informe final de tesis titulado: "INTERACCIÓN SISMICA SUELO — ESTRUCTURA EN LA EDIFICACIÓN DE LA RESIDENCIA ESTUDIANTIL DE LA UNIVERSIDAD NACIONAL DE HUANCAVELICA", presentado por los Bachilleres Iván Marino Olarte Breña y Romel Enrique Sanchez Choque, para optar el Título Profesional de Ingeniero Civil; en presencia del Ing. Omar CABALLERO SANCHEZ, Asesor del presente trabajo de tesis. Finalizado la evaluación a horas. A: 3.9...PM) se invitó al público presente y a los sustentantes abandonar el recinto. Luego de una amplia deliberación por parte de los Jurados, se llegó al siguiente resultado:

APROBADO DESAPROBADO ROMEL ENRIQUE SANCHEZ CHOQUE APROBADO DESAPROBADO En conformidad a lo actuado firmamos a continuación:

Presidente

IVÁN MARINO OLARTE BREÑA

B Decano

retariø

18

DEDICATORIA

A mi papá, mamá y hermanos, por el apoyo incondicional en mi formación profesional

lván

DEDICATORIA

A mis padres Mauro e Hilaria y hermanos Frank, Jessica y Mauro, por ser fuente de motivación en nuestros quehaceres diarios y por su apoyo incondicional y desinteresado.

Romel

7

AGRADECIMIENTO

A Dios, por todo lo que somos.

Al personal directivo y jerárquico de la Escuela Académico Profesional de Civil (Huancavelica), de la Universidad Nacional de Huancavelica, por su incondicional apoyo en nuestra formación profesional.

Al Ing. Omar Caballero Sánchez, por el gran apoyo como asesor en el desarrollo de la tesis; de igual manera expresamos nuestro más grande agradecimiento al: Ing. Carlos Gaspar Paco, Ing. Renato Ciro Coronel Sánchez, Ing. Marco Antonio López Barrantes, Ing. Jaime Caballero Sánchez, Ing. Diógenes Pari, Lic. Martin Alcántara Espinoza y demás catedráticos con quienes compartimos nuestros conocimientos y experiencias en las aulas de clase.

ÍNDICE

		Pág.
Dedicatoria		ii
Agradecimiento		iii
Índice		iv
Resumen		vi
Abstract		vii
Introducción		viii
	Capítulo I	
	PROBLEMA	
1.1. Planteamiento del problema		
1.2. Formulación del problema		
1.3. Objetivos generales y específicos		
1.4. Justificació	n	12
	Capítulo II	
	MARCO TEÓRICO	
2.1. Antecedentes		
2.2. Bases teór	icas	16
2.2.1.	Interacción suelo – estructura	16
2.2.2.	Análisis de edificios	18
2.2.3.	Interacción suelo – cimentación	19
2.2.4.	Sistema Suelo – Estructura	23
2.2.5.	Modelo de interacción suelo – estructura	24
2.2.6.	Esquema de cálculo de edificaciones, considerando la flexibilidad de	
	la base.	26
2.3. Hipótesis		39
2.4. Definición	de términos	39
2.5. Variables de estudio		

Capítulo III

METODOLOGÍA DE LA INVESTIGACIÓN

3.1. Ambito de estudio	47		
3.2. Tipo de estudio	47		
3.3. Nivel de investigación			
3.4. Método de investigación	47		
3.5. Diseño de investigación	48		
3.6. Población y muestra	48		
3.7. Técnicas e instrumentos de recolección de datos	49		
3.8. Procedimiento de recolección de datos	49		
3.9. Técnicas de procesamiento y análisis de datos	50		
Capítulo IV			
RESULTADOS			
4.1. Presentación de resultados	51		
4.1.1. Tamaño muestral	51		
4.1.2. Suelo de fundación	53		
4.1.3. Análisis estructural	54		
4.1.4. Resultados de la investigación numérica	81		
4.2. Discusión de resultados	88		
Conclusiones	99		
Recomendaciones			
Referencia bibliográfica			
Cybergrafía			
Artículo científico	104		
Anevos			

RESUMEN

El trabajo de investigación, que lleva por nombre "Interacción sísmica suelo – estructura en la edificación de la Residencia Estudiantil de la Universidad Nacional de Huancavelica", está centrada en la aplicación de los métodos de interacción suelo - estructura, para determinar la respuesta estructural en mención. Para su aplicación se utilizaron los diferentes modelos propuestos por distinguidos científicos extranjeros cuyas investigaciones llevan muchos años en su elaboración.

Los modelos evaluados en la presente investigación fueron tomados como referencia de las publicaciones del Dr. Genner Villarrael Castro, en las cuales abundan conceptos más profundos acerca de este tópico que vincula a la Ingeniería Estructural y Geotécnica, partiendo de la premisa de que todas las estructuras deben cumplir con las exigencias de las normas de diseño sismorresistente vigentes como es la Norma Peruana E.030 – 2003.

Como herramienta principal se usó el software informático ETAPS, el cual presenta una alternativa de metodológica para el análisis de interacción sísmica suelo - estructura considerando la flexibilidad de la fundación.

De los resultados más resaltantes se desprende, la siguiente conclusión:

Es notorio que la flexibilidad de la base de fundación en el análisis sísmico, a pesar que el suelo es rígido, produce cambios significativos en los modos de vibración y distribución de fuerzas, debiendo mejorarse la Norma Peruana E.030 – 2003, incluyendo la exigencia del análisis de interacción suelo – estructura, el cual describe perfectamente el comportamiento real de la edificación ante los sismos.

ABSTRACT

The research work, the fact that Interaction takes for name Seismic Ground – Structure, of The Student residence of Huancavelica's National University, the ground is centered on the application of Interaction's methods structure, in order to determine the structural answer in mention; Whose investigations utilized the different models proposed by distinguished foreign scientists themselves for his application they carry many years in his elaboration.

The evaluated models in present it they were investigation drunk like reference of the publications of the Dr. Genner Villarrael Castro, the ones that deep concepts about this topic that links the Structural Engineering and Geotécnic abound with, departing from the premise that all the structures must abide by the requirements of the designing standards sismorresistente in use as it is the Peruvian standard E.030 – 2003.

Like principal tool himself I use the information-technology software ETAPS, which presents metodológic's alternative for the analysis of seismic interaction I sole structure considering the flexibility of the foundation.

Of the noteworthiest results emitting the following conclusion:

- He is the flexibility notoriously of the base of foundation in the seismic analysis, to sorrow that the ground is rigid, produce significant changes in the modes of vibration and distribution of forces, owing of getting better the Peruvian Standard E.030 – 2003, including the requirement of the analysis of interaction ground – structure, which, describe the real behavior of the edification in front of seism's perfectly.

INTRODUCCIÓN

En la actualidad, estamos orientados al cambio de métodos de cálculo más seguros, a la búsqueda de nuevas metodologías de análisis para resolver problemas constructivos, los cuales conlleven hacia un diseño seguro y económico. En tal sentido, es imperativo diseñar las estructuras considerando su verdadero comportamiento bajo la interacción del suelo – cimentación – superestructura.

Resulta imposible aislar la estructura de su interacción con el suelo de fundación; en tal sentido la interacción suelo - estructura, une a la Ingeniería Geotécnica con la Ingeniería Estructural., existiendo aún sin número de espectros y parámetros a resolver. En los últimos años el desarrollo de las capacidades de las computadoras, ha permitido analizar diversos tipos de estructuras, considerando su interacción con el suelo de fundación.

Este es el caso del Software ETAPS, el cual permite modelar y analizar edificaciones, mediante técnicas de modelamiento simple y sofisticado, lo que nos llevó a desarrollar en estudio sobre la interacción sísmica, proporcionadas por los modelos dinámicos de interacción suelo – estructura, habiendo elegido la Residencia Estudiantil de la Universidad Nacional de Huancavelica, por ser una estructura importante que alberga a gran cantidad de estudiantes de esta casa de estudios.

Para tal fin se espera desarrollar una adecuada metodología en el análisis de interacción suelo - estructura para este tipo de estructuras.

En el Primer Capítulo se plantea el problema, que dio origen a la presente investigación, y los objetivos planteados para el desarrollo de la presente Tesis.

En el Segundo Capítulo se describe el marco teórico referente a los estudios del tema interacción suelo - estructura, desarrollando de esta forma la hipótesis de la investigación y las variables de estudio.

En el Tercer Capítulo se desarrolla la metodología de investigación para la tesis, considerando el ámbito de estudio, tipo de investigación, etc.

El Cuarto Capítulo muestra los resultados, como la descripción de la estructura, la metodología de modelación de la edificación por el programa ETAPS, analizando los cuatro modelos dinámicos propuestos en la presente tesis bajo la acción del espectro de aceleración y acelerograma tiempo - historia de Lima (17.10.1966); de igual forma, se presenta la discusión de resultados en forma de estadística descriptiva.

En las conclusiones se discuten los resultados y las recomendaciones de uso y aplicación científica.

La investigación está dirigida a ingenieros civiles, egresados, estudiantes e investigadores en el área de la mecánica estructural.

Los autores

CAPITULO I PROBLEMA

1.1. PLANTEAMIENTO DEL PROBLEMA

A. Antecedentes

En los últimos tiempos se está dando mucha importancia al problema de interacción suelo-estructura. En un sentido más generalizado, este problema puede ser formulado como un contacto dinámico entre la base y la estructura.

Sin embargo, la actualidad de este problema aún está lejos de su verdadera formulación, ya que su modelo matemático tiene un sinnúmero de espectros de solución.

En las investigaciones actuales se han resuelto varios aspectos de este problema. Por ejemplo, cuando la base es considerada como un semiespacio elástico y la acción sísmica como un proceso ondulatorio, se resolvieron varios problemas de difracción de ondas en la cimentación, el cual ha determinado el carácter de la acción sísmica en la edificación.

Otra orientación más cercana a los métodos ingenieriles, se relacionan con determinados parámetros de rigidez de la cimentación, que se determinan en base a investigaciones experimentales o procesos teórico-experimentales, que consideran el carácter ondulatorio de la acción sísmica.¹

Debido a estos diferentes problemas se desarrollaron poderosos programas de cómputo, como el ETAPS, que nos permite modelar y analizar las edificaciones mediante técnicas de modelación simple y sofisticado, lo que nos llevó a desarrollar un estudio sobre la sensibilidad de la respuesta sísmica, proporcionadas por los modelos dinámicos de interacción suelo – estructura.

¹Dr. Genner Villarael Castro. Interacción sísmica-suelo estructura en edificaciones con zapatas aisladas. Libro Premio Nacional ANR 2006

B. Descripción local

En caso de Huancavelica, las construcciones se incrementan a diario; este es el caso de las edificaciones de la Universidad Nacional de Huancavelica y alrededores, cuyas estructuras están dirigidas a albergar gran cantidad de estudiantes. En consecuencia, la seguridad estructural tiene un valor importante en el desarrollo de local. La relación de costos, con la consecuente seguridad de las obras es el problema central de la construcción en nuestra localidad. La razón fundamental en la solución de este problema es la elaboración de metodologías de cálculo sísmico, considerando la real interacción suelo estructura, en consecuencia se plantea la tesis "Interacción sísmica suelo-estructura en la edificación de la residencia estudiantil de la Universidad Nacional de Huancavelica".

C. Delimitación de la investigación

El presente proyecto de tesis está referido a la aplicación de la interacción sísmica suelo - estructura en la edificación de la residencia estudiantil de la Universidad Nacional de Huancavelica, con la finalidad de llegar a investigar la participación del suelo de fundación conjuntamente con la estructura frente a eventos sísmicos y los parámetros que intervienen en dicha interacción.

1.2. FORMULACIÓN DEL PROBLEMA

Teniendo en cuenta el planteamiento del problema en el presente proyecto de investigación se planteó la siguiente interrogante.

¿Cuál es el efecto de la Interacción sísmica suelo - estructura en la edificación de la residencia estudiantil de la Universidad Nacional de Huancavelica?

1.3. OBJETIVOS

1.3.1. OBJETIVO GENERAL

 Explicar el efecto de la interacción sísmica suelo – estructura en la edificación en la residencia estudiantil de la Universidad Nacional de Huancavelica, considerando la flexibilidad y las propiedades inerciales del suelo de fundación.

1.3.2. OBJETIVO ESPECÍFICO

- Identificar el tipo de suelo de fundación en la estructura de la residencia estudiantil de la Universidad Nacional de Huancavelica.
- Identificar el tipo de cimentación utilizada en la estructura de la residencia estudiantil de la Universidad Nacional de Huancavelica.
- Identificar el tipo y uso de la superestructura de la residencia estudiantil de la Universidad Nacional de Huancavelica.
- Elaborar la modelación de la edificación por el método de secciones transformadas, cumpliendo con los requisitos mínimos expresados en las Normas Peruanas E-020, E-030, E-060 y E-070.
- Adaptar los modelos de interacción sísmica suelo estructura a la estructura de la edificación de la residencia estudiantil de la Universidad Nacional de Huancavelica.
- Determinar el efecto del sismo sobre la estructura de la residencia estudiantil de la Universidad Nacional de Huancavelica.

1.4. JUSTIFICACIÓN

El efecto de la interacción suelo-estructura es muy notorio en el cálculo de edificaciones, porque influye en la determinación de los modos de vibración libre, así como en la redistribución de los esfuerzos en el edificio y cimentación, cambiando las fuerzas internas en los diferentes elementos estructurales.

El avance de la mecánica estructural y la teoría de edificaciones, aplicados a la construcción de edificios, han originado dos tendencias de cálculo. La primera de ellas se fundamenta en el modelo de péndulo invertido o pórtico plano para el análisis de edificaciones con esquemas constructivos complejos. La segunda tendencia se basa en el análisis espacial de la estructura; sin embargo, los trabajos relacionados con el cálculo espacial de edificaciones son muy pocos, por lo que se

opta por trabajar con la primera tendencia de cálculo; de esta forma se pierde la posibilidad de la descripción de diversos efectos dinámicos del trabajo real de la estructura; donde no se muestra el sentido físico de la interacción suelo-estructura, debido a los desplazamientos del suelo que interactúa junto con la estructura.

CAPITULO II MARCO TEÓRICO

2.1. ANTECEDENTES

2.1.1. Estudios similares:

En la búsqueda de información relevante y relacionada a la presente investigación se han encontrado investigaciones previas cuyas conclusiones fundamentales son las siguientes:

NACIONAL

Dr. Villarael (2006) "Interacción sísmica suelo - estructura en Edificaciones con Zapatas Aisladas." El cálculo sísmico con ayuda de los modelos dinámicos de interacción suelo-estructura, nos muestra que la flexibilidad de la base de fundación influye directamente en la determinación de los parámetros de cálculo. La flexibilidad de la base de fundación por la Norma Peruana E030-2003, cuando α=00, permite el incremento del período de la primera forma de vibración hasta 30,1%; disminución de la frecuencia correspondiente a la primera forma de vibración hasta ,1%; incremento de los desplazamientos máximos del centro de masas en el eje OX hasta 28,3% y en el eje OY hasta 24,1%; disminución de las fuerzas axiales máximas hasta 24,8%; disminución de las fuerzas cortantes máximas hasta 17,0% y disminución de los momentos flectores máximos hasta 5,1%. Los momentos torsores no varían.

Es notorio el efecto de la flexibilidad de la base de fundación en el análisis sísmico, debiendo de mejorarse la Norma Peruana E030-2003, incluyendo la exigencia de dicho tipo de análisis, el cual describe perfectamente el comportamiento real de la edificación ante sismos.²

²Dr. Genner Villarael Castro. Interacción Sísmica Suelo – Estructura en Edificaciones con Zapatas Aisladas. Premio Nacional ANR 2006.

estructura en edificaciones de albañilería confinada con plateas de cimentación". El lograr que el suelo de fundación interactúe de manera conjunta con la estructura, nos permite obtener resultados que describen el verdadero comportamiento de éste, frente a un evento sísmico, mediante la utilización de los parámetros que nos brinda el estudio de mecánica de sueles y que muchas veces algunos de ellos no se toman en cuenta en un modelamiento común que no considera interacción.

El diseño de estructuras en general está basado en un delicado balance entre resistencia y capacidad de deformación de una estructura. De esta forma, las estructuras que tienen mayor resistencia son capaces de soportar las fuerzas y deformaciones inducidas por eventos sísmicos, comportándose en el rango lineal. Por otra parte, estructuras que tienen una mayor capacidad de deformación son diseñadas para soportar un sismo a través de la disipación de energía que resulta de la generación de trabajo en la plastificación de los elementos estructurales.³

LOCAL

Ing. Diego C. V. (2012) "Interacción sísmica suelo-estructura en edificaciones aporticadas". Como conclusión final, el efecto de interacción suelo-estructura es muy notorio en el cálculo de edificaciones, porque influye en la determinación de los modos de vibración libre, así como en la distribución de los esfuerzos en el edificio y cimentación, debido a la flexibilidad del apoyo; por lo tanto hay un flujo de energía desde el suelo a la estructura y viceversa, cambiando las fuerzas internas en los diferentes elementos estructurales⁴

³Ing. Galicia Guarniz, William y Ing. León Vasquez, Javier R. Interacción Sismica Suelo-Estructura en Edificaciones de Albañileria Confinada con Plateas de Cimentación. Trujillo 2007

⁴Bach.Ing. Diego Curasma, Wladimir. Interacción Sísmica-Suelo Estructura en Edificaciones Aporticadas. Tesis Universidad Nacional de Huancavelica **2012**

2.2. BASES TEÓRICAS

2.2.1. Interacción suelo – estructura

I. Generales

- A. Definición.- La respuesta sísmica de la estructura está íntimamente ligada a la forma como los movimientos sísmicos del terreno afectan la estructura a través de su cimentación. Las características dinámicas del suelo subyacente, la rigidez y disposición de la cimentación y el tipo de sistema estructural de la edificación interactúan entre sí para caracterizar los efectos sísmicos sobre ella. El hecho de que no se tome en cuenta la rigidez de la cimentación y las características dinámicas del suelo subyacente en el análisis sísmico de la edificación puede conducir a variaciones apreciables entre la respuesta sísmica estimada y la respuesta real de la estructura. Por las razones anotadas es conveniente incluir los efectos de la interacción suelo estructura en el análisis sísmico de la edificación.
- B. Efectos asociados con la interacción suelo estructura.-Dependiendo de las características de la estructura, de sus cimentación y del suelo subyacente, la respuesta de la estructura ante solicitaciones estáticas verticales y dinámicas (sismo) puede variar con respecto al estimativo que se realiza sin tener en cuenta la interacción suelo - estructura en los siguientes aspectos.
 - La presencia de suelos blandos y comprensibles en la distribución de esfuerzos y deformaciones bajo losas de fundación, tanto ante solicitaciones de cargas verticales como de fuerzas horizontales.
 - Variaciones en los periodos de vibración de la edificación.
 - Aumento del amortiguamiento viscoso equivalente del sistema estructura – cimentación - suelo.
 - Variación en la distribución de las fuerzas cortantes horizontales producidas por los movimientos sísmicos.

Los efectos de interacción suelo - estructura no deben confundirse con los efectos de sitio causados por la amplificación de la onda sísmica al viajar desde la roca hasta la superficie.⁵

II. Información geotécnica

A continuación se describe el alcance mínimo de exploración, interpretación y recomendaciones que debe contener el estudio geotécnico.

- A. Exploración.- Los procedimientos de exploración deben ser consistentes con el tipo de propiedades que deban estudiarse, ya sea por procedimiento de campo o de laboratorio. Debe tenerse especial cuidado respecto a los niveles de deformación a que se expresen las propiedades del suelo, los cuales deben ser compatibles con los niveles de deformación que le imponen los movimientos sísmicos.
- B. Laboratorio.- Los procedimientos de laboratorio deben cuantificar, directa o indirectamente, las características del material bajo condiciones dinámicas y a los niveles de deformación esperados durante los movimientos sísmicos.
- C. Interpretación.- La información de campo y de laboratorio debe combinarse en un conjunto de recomendaciones que describan y sustenten las características que debe emplear el ingeniero estructural en los modelos matemáticos del fenómeno. Las recomendaciones deben fijar limitaciones y rangos de aplicabilidad, fáciles de identificar, con el fin de evitar el peligro que entraña la utilización de los parámetros recomendados, fuera del contexto bajo el cual se expresaron.
- D. Revisión y evaluación de los resultados.- El ingeniero geotecnista debe revisar y avalar los resultados obtenidos por el ingeniero estructural, en lo concerniente a las recomendaciones para

⁵Leonardo Zeevaert W. Interacción Suelo – Estructura de Cimentaciones superficiales y Profundas: Sujetas Cargas Estáticas y Dinámicas. Capitulo 6. México. Limusa 2002

interacción suelo-estructura del estudio geotécnico y la validez de los resultados de interacción suelo-estructura obtenidos con base en sus propias recomendaciones.⁶

2.2.2. Análisis de edificios

A. Solicitaciones sísmicas y análisis

En concordancia con los principios de diseño sismorresistente se acepta que las edificaciones tendrán incursiones inelásticas frente a solicitaciones sísmicas severas. Por tanto; las solicitaciones sísmicas de diseño se consideran como una fracción de la solicitación sísmica máxima elástica.

El análisis podrá desarrollarse usando las solicitaciones sísmicas reducidas con un modelo de comportamiento elástico para la estructura.

B. Modelos para análisis de edificios

El modelo para el análisis deberá considerar una distribución espacial de masas y rigidez que sean adecuadas para calcular los aspectos más significativos del comportamiento dinámico de la estructura.

Para edificios en los que se pueda razonablemente suponer que los sistemas de piso funcionan como diafragmas rígidos, se podrá usar un modelo con masas concentradas y tres grados de libertad por diafragma, asociados a dos componentes ortogonales de traslación horizontal y una rotación. En tal caso, las deformaciones de los elementos deberán compatibilizarse mediante la condición de diafragma rígido y la distribución en planta de las fuerzas horizontales deberá hacerse en función a las rigideces de los elementos resistentes. Deberá verificarse que los diafragmas tengan la rigidez y resistencia suficientes para asegurar la distribución mencionada, en caso contrario, deberá tomarse en cuenta su flexibilidad para la distribución de las fuerzas sísmicas.

⁶Leonardo Zeevaert W. Interacción Suelo – Estructura de Cimentaciones superficiales y Profundas: Sujetas Cargas Estáticas y Dinámicas. Capitulo 7. México. Limusa 2002

Para los pisos que no constituyan diafragmas rígidos, los elementos resistentes serán diseñados para las fuerzas horizontales que directamente les corresponde.

C. Peso de la edificación

El peso (P), se calculará adicionando a la carga permanente y total de la edificación un porcentaje de la carga viva o sobrecarga que se determinará de la siguiente manera:

- a) En edificaciones de las categorías A y B, se tomará el 50% de la carga viva.
- b) En edificaciones de la categoría C, se tomará el 25% de la carga viva.
- c) En depósitos, el 80% del peso total que es posible almacenar.
- d) En azoteas y techos en general se tomará el 25% de la carga viva.
- e) En estructuras de tanques, silos y estructuras similares se considerará el 100% de la carga que puede contener.

D. Desplazamientos laterales

Los desplazamientos laterales se calcularán multiplicando por 0,75R los resultados obtenidos del análisis lineal y elástico con las solicitaciones sísmicas reducidas. Para el cálculo de los desplazamientos laterales no se considerarán los valores mínimos de C/R.

E. Solicitaciones sísmicas verticales

Estas solicitaciones se considerarán en el diseño de elementos verticales, en elementos post o pre tensados y en los voladizos o salientes de un edificio.⁷

2.2.3. Interacción Suelo Cimentación

A. Características del diseño de cimentación

El terreno, al recibir cargas que son transmitidas por la cimentación, tiende a deformarse en una o en varias de sus capas, dependiendo de la compresión y las propiedades del mismo, las cuales pueden variar con el tiempo o con algunos factores como son: la variación del volumen de vacíos como consecuencia de la compactación del terreno, el desplazamiento y deformación de las partículas al irse acumulando estas, lo cual producen asentamientos en la superficie de contacto entre la cimentación y el terreno.

Los cimientos juegan un papel muy importante dentro de la edificación ya que éstos son los que contribuyen las cargas de la estructura hacia el suelo, de tal manera que el suelo y los materiales que lo constituyen tengan una capacidad suficiente para soportarlas sin sufrir deformaciones excesivas. Dependiendo de la interacción del suelo y la cimentación, las características de ésta cambiarán en cuanto a su tipo, forma, tamaño, costo, etc.

B. Clasificación de las Cimentaciones

La clasificación más común de clasificar las cimentaciones es en función de la profundidad de los estratos:

- B.1. Cimentaciones superficiales: Son aquellas que se apoyan en estratos poco profundos que tienen suficiente capacidad para resistir las cargas de la estructura, En esta clasificación encontramos
 - Zapatas: Son ensanchamientos de la sección de las columnas o muros con los que distribuye la carga de estos a un área de contacto mayor con el suelo. Estas pueden ser aisladas (bajo una sola columna), combinadas (bajo dos o más columnas) o corridas (bajo un muro a una contratrabe).
 - Losas de cimentación: Aquí el apoyo se realiza sobre toda el área de la construcción. Estas pueden ser planas (sin vigas) o con retículas de viga (llamadas contratrabes)

B.2. Cimentaciones profundas

Están constituidas esencialmente por pilotes que transmiten su carga por punta o por fricción y que se denominan *pilas* cuando su sección transversal es de gran tamaño.

C. Conceptos fundamentales

C.1. Aspectos fundamentales del problema

El peso de la construcción se concentra en las áreas relativamente pequeñas de la columna, y éstas tienen que transmitirse a través del área de contacto entre las zapatas y el suelo. En la práctica, es común hacer el análisis de la estructura como sistema independiente de su cimentación y del suelo, además de suponer que la base de la estructura posee condiciones de apoyo determinadas, que en general son de apoyo empotrado.

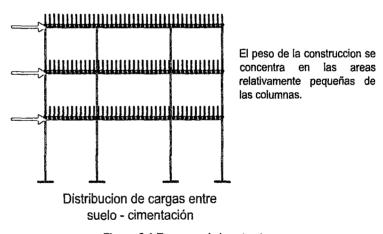


Figura 2.1 Esquema de la estructura

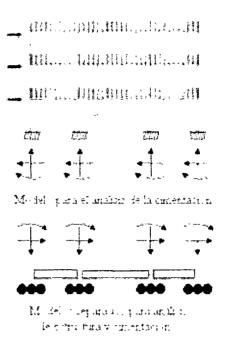
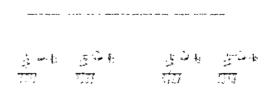



Figura 2.2 Análisis de estructura y cimentación

De forma rigurosa, dicho procedimiento es incorrecto por lo que se debería de analizar un modelo que considerara un sistema superestructura-cimentación-suelo, como es el de la (Figura 2.3.), debido a que las deformaciones que se tienen en la cimentación y en el suelo modifican no solo la distribución de presiones sobre la cimentación, sino también las fuerzas internas en toda la estructura. 8

Modelo para el análisis conjunto del sistema estructura-cimentación-suelo

Figura 2.3 Modelo Alternativo para Análisis de Estructura Cimentación

⁸Leonardo Zeevaert W. Interacción Suelo – Estructura de Cimentaciones superficiales y Profundas: Sujetas Cargas Estáticas y Dinámicas. Capitulo 10. México. Limusa 2002

2.2.4. Sistema suelo – estructura

El análisis de edificios se lleva normalmente a cabo suponiendo que el movimiento que se aplica en su base, o las fuerzas estáticamente equivalentes que obran en sus distintos niveles, son independientes de las características de la cimentación. Sin embargo, existen casos en que el movimiento en cualquier punto de la frontera suelo – estructura es sensiblemente diferente del que habría ocurrido en dicho punto si la estructura no estuviese presente; en estos casos se dice que existe interacción suelo – estructura.

Conviene estudiar el problema considerando primero las diferencias en el movimiento del terreno que provienen de la rigidez del sistema estructura – cimentación como si no tuviera masa, lo cual se denomina interacción cinemática, porque es causada fundamentalmente por la geometría y rigidez de la cimentación. Las diferencias consisten en general en un filtrado de los componentes traslacionales del movimiento en cuestión (disminución de su amplitud en el intervalo de frecuencias altas y medias) y en la modificación de componentes rotacionales y torsionales. Estos efectos parcialmente motivan que en los reglamentos se estipulen excentricidades accidentales, que generan torsiones en planta aun en edificios completamente simétricos.

En un segundo paso se considera las fuerzas de inercia que se generan por la vibración de las masas de la cimentación y de la estructura, que da lugar no sólo a elementos mecánicos dentro de los distintos miembros que las componen, sino también tres fuerzas y tres momentos referidos a dos ejes horizontales y uno vertical en la base. Si el suelo no es muy rígido, tales fuerzas y momentos producen deformaciones que modifican el movimiento de la cimentación. Se habla en este caso de la interacción inercial. Una manera de tomar en cuenta este tipo de interacción consiste en modificar las características dinámicas de la estructura.

Para ilustrar lo conceptos involucrados en la dinámica de sistemas suelo – estructura, consideramos el sistema de la figura 2.4, que consiste en una

masa m, soportada por una estructura elástica con rigidez lateral k, la cual, a su vez se apoya sobre una cimentación rígida de masa m_x enterrada en suelo deformable.

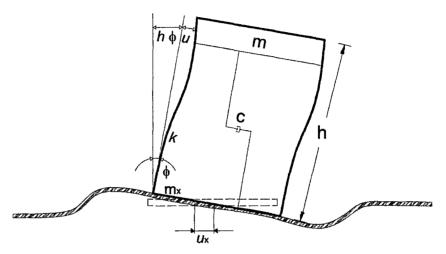


Figura 2.4 Modelo sistema Suelo – Estructura

2.2.5. Modelo de interacción suelo - estructura

Resulta imposible resolver los diversos problemas de la ingeniería sísmica sin la elaboración fundamentada de los modelos físicos aproximados de las estructuras, con lo cual se propone la elección del tipo de modelo de interacción y el modelo estructural, los cuales están integramente relacionados. La principal exigencia para estos modelos es su aproximación cercana con la realidad.

Tradicionalmente se usó el modelo de péndulo invertido sin peso, con masas puntuales a nivel de entrepisos y empotrado en la base (suelo), el cual puede comunicar a la estructura la acción sísmica externa en dos direcciones mutuamente perpendiculares (Figura 2.5).

Este modelo presenta las siguientes insuficiencias: se pierde la posibilidad de la descripción de diversos efectos dinámicos del trabajo real de la estructura; donde no se muestra el sentido físico de la interaccion suelo -

⁹Enrique Bazán, Roberto Meli Diseño sísmico de Edificios. México. Limusa 2002

estructura, debido a los desplazamientos del suelo que interactúa junto con la estructura.

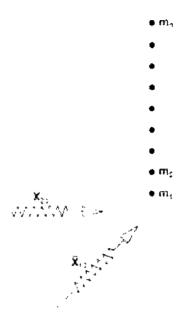


Figura 2.5 Modelo de péndulo invertido sin peso

Ante la acción sísmica la masa m_1 realiza desplazamientos horizontales y giros. El amortiguamiento, tanto en el edificio, como en el suelo se consideran por hipótesis equivalentes de resistencia viscosa.

En Japón se planteó la interacción suelo - estructura en forma de una platea rectangular (Figura. 2.6), la cual se desplaza por el suelo y gira alrededor del plano vertical, así como parcialmente se puede despegar de la superficie del terreno.

En Turquía se presentó un modelo cuyo sistema de cálculo se modeló en forma entrecruzada con masas puntuales en los nudos (Figura. 2.7).¹⁰

¹ºIng. Galicia Guarniz, William y Ing. León Vasquez, Javier R. Interacción Sísmica Suelo-Estructura en Edificaciones de Albañileria Confinada con Plateas de Cimentación. Trujillo 2007

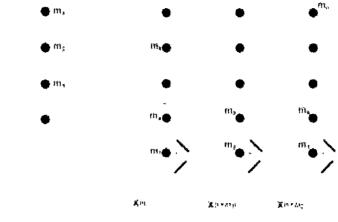
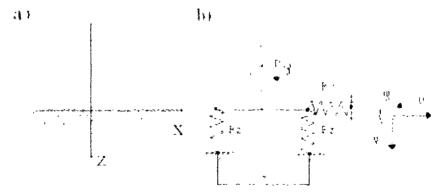



Figura 2.6 figura 2.7

2.2.6. Esquema de cálculo de edificaciones, considerando la flexibilidad de la base

Para aclarar las principales dificultades, que surgen en la formulación de tal problema, es necesario analizar el problema más sencillo de interacción suelo- estructura; es decir, el de péndulo invertido con masas puntuales a nivel de entrepisos.

Para ello admitimos la concepción de flexibilidad elástica de la base de fundación, llegando al siguiente esquema de fijación de la base del péndulo mostrado en la (figura 2.8), donde "c" es el ancho de la cimentación.

Figura 2.8. Esquema de cálculo de las condiciones de fijación de la estructura tipo péndulo invertido: a) Esquema tradicional, b) Esquema considerando la flexibilidad de la base de fundación.

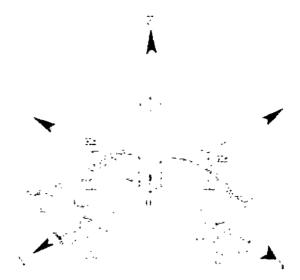


Figura 2.9. Esquema espacial de cálculo de la cimentación tipo zapata aislada.

A. Modelo dinámico D.D. Barkan - O.A. Savinov

Como resultado de muchas investigaciones experimentales para determinar los coeficientes de rigidez de las cimentaciones, el científico ruso D.D. Barkan, en el año 1948, propuso utilizar las siguientes expresiones:

$$K_z = C_z A$$

$$K_x = C_x A$$

$$K_{\varphi} = C_{\varphi}I$$

Donde:

 $\mathit{C_z} \mathrel{y} \mathit{C_{\varphi}}$:coeficientes de compresión elástica uniforme y no uniforme.

 \mathcal{C}_x :coeficiente de desplazamiento elástico uniforme.

A : área de la base de la cimentación.

 I :momento de inercia de la base de la cimentación respecto al eje principal, perpendicular al plano de vibración.

Por cuanto los coeficientes C_z , C_x , C_{φ} dependen no solo de las propiedades elásticas del suelo, sino de otros factores, es necesario analizarlos como ciertas características generalizadas de la base de fundación.

Con el propósito de obtener las fórmulas de cálculo para los coeficientes C_z , C_x , C_{φ} analizamos dos modelos: modelo del semiespacio elástico isotrópico con poco peso y el modelo M.M. Filonenko-Borodich.

Como resultado de la investigación se obtuvieron las siguientes expresiones:

$$C_z = X_z \cdot \frac{E}{1 - \mu^2} \cdot \frac{1}{\sqrt{A}}$$

$$C_x = X_x \cdot \frac{E}{(1 - X_x \mu)(1 + \mu)} \cdot \frac{1}{\sqrt{A}}$$

$$C_{\varphi} = X_{\varphi} \cdot \frac{E}{1 - u^2} \cdot \frac{1}{\sqrt{A}}$$

Donde:

 X_z, X_x, X_{φ} :coeficientes, dependientes de la relación de las dimensiones de la base de la cimentación.

 μ : coeficiente de Poisson.

Los experimentos realizados por diversos investigadores, nos mostraron, que las fórmulas mencionadas nos llevan a ciertos errores, aunque estas dependencias, en sentido general son cercanas a la realidad.

Las principales deficiencias de este modelo, consiste en que no describe la dependencia entre los coeficientes C_z , C_x , C_{φ} , con las dimensiones de la base de la cimentación, y lo que es mucho más importante, no considera las propiedades inerciales de los suelos.

Las siguientes precisiones de tal modelo se realizaron en base a las investigaciones teóricas, efectuadas por el científico O.A. Shejter para el problema de vibraciones forzadas de un cuño circular muy pesado, apoyado sobre un semiespacio elástico isotrópico pesado. Aunque la concepción de masa "adherida" del suelo, introducida por O.A. Shejter, no tuvo una repercusión directa, las investigaciones teóricas y experimentales permitieron identificar la dependencia de

los coeficientes C_z , C_x , C_φ , con la presión estática ρ , que transmite la cimentación a la base.

La forma final para determinar los coeficientes de compresión y desplazamiento de la base en el modelo D.D. Barkan-O.A. Savinov es:

$$C_z = C_o \left[1 + \frac{2(a+b)}{\Delta \cdot A} \right] \sqrt{\frac{\rho}{\rho_o}}$$

$$C_x = D_o \left[1 + \frac{2(a+b)}{\Delta \cdot A} \right] \sqrt{\frac{\rho}{\rho_o}}$$

$$C_{\varphi} = C_o \left[1 + \frac{2(a+3b)}{\Delta \cdot A} \right] \sqrt{\frac{\rho}{\rho_o}}$$

Donde:

 $\mathcal{C}_o,\mathcal{D}_o$: coeficientes determinados a través de experimentos realizados para $ho=
ho_0$

a, b : dimensiones de la cimentación en el plano;

 Δ : coeficiente empírico, asumido para cálculos prácticos igual a Δ = 1m⁻¹

Para el coeficiente D_o, como se mostraron en los experimentos, se puede utilizar la dependencia empírica:

$$D_o = \frac{1-\mu}{1-0.5\mu}. C_o$$

Para cálculos prácticos se recomienda utilizar las siguientes fórmulas:

$$C_o = 1.7. \frac{E_o}{1 - \mu^2} \cdot 10^{-3} \cdot \left(\frac{kg}{cm^3}\right)$$

$$C_o = 1.7. \frac{E_o}{(1 - \mu^2)(1 - 0.5\mu)} \cdot 10^{-3} \cdot \left(\frac{kg}{cm^3}\right)$$

Donde:

 E_o : Módulo de elasticidad, calculado experimentalmente para presión estática del suelo de 0,1-0,2kg/cm².

También se pueden usar los valores del coeficiente C_o cuando $\rho_o=0.2~{\rm kg/cm^2}$, elegidos de acuerdo al tipo de suelo de la base de fundación, a través de la (tabla 2.1.)

Tabla 2.1.

Perfil	Base de fundacion	Suelo	Co (kg/cm³)
	Does e suele	Roca, Arcilla y arena arcillosa dura (l∟<0)	3.0
S1	Roca o suelo	Arena compacta (I _L <0)	2.2
	muy rigido	Cascajo, grava, canto rodado, arena densa	2.6
		Arcilla y arena arcillosa plástica (0.25 <i⊾≤0.5)< td=""><td>2.0</td></i⊾≤0.5)<>	2.0
		Arena plástica (0 <l∟≤0.5)< td=""><td>1.6</td></l∟≤0.5)<>	1.6
S2	Suelo intermedio	, manua portono an inicario ano incario	
		Arena de grano fio, mediano y grueso independiente de su densidad y humedad	1.8
	Suelo flexible o	Arcilla y arena arcillosa de baja plasticidad (0.5 <l∟≤0.75)< td=""><td>0.8</td></l∟≤0.75)<>	0.8
S3	con estratos de	Arena Plástica (0.5 <i∟≤1)< td=""><td>1.0</td></i∟≤1)<>	1.0
	gran espesor	Arena pólvoras, saturadas, porosa (e>0.80)	1.2
S4	Condiciones	Arcilla y arena arcillosa muy blanda (IL>0.75)	0.6
	excepcionales	Arena movediza (I∟>1)	0.6

Se puede indicar que el modelo dinámico analizado D.D. Barkan - O.A. Savinov es teórico-experimental, basado en la interacción de la cimentación con la base de fundación en forma de proceso establecido de vibraciones forzadas.

Esta suposición permitió diversas críticas fundamentadas científicamente, tratándose de su aplicación del determinado modelo en el cálculo sísmico de edificaciones considerando la interacción suelo-estructura. Esto es mucho más claro, porque es conocido que el sistema suelo-estructura ante sismos se analiza como un proceso ondulatorio no estacionario.

B. Modelo dinámico de V.A. ILICHEV

El modelo dinámico V.A. Ilichev fue elaborado para aplicar a problemas ondulatorios de interacción suelo-estructura, modelado como un semiespacio elástico. En un inicio el esquema de cálculo de este modelo se aplicó a problemas de vibraciones verticales de cimentaciones circulares, apoyados sobre un semiespacio elástico

159

isótropo. El esquema de cálculo de este modelo se muestra en la (Figura 2.10.)

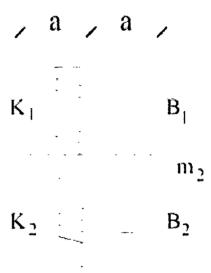


Figura 2.10. Modelo Dinámico de V.A. Ilichev.

La parte superior del sistema es una placa sin peso, donde el resorte con rigidez K_1 y el amortiguador B_1 modelan el efecto creado por las ondas longitudinales. Los parámetros K_1 y B_1 dependen del radio de la placa, densidad del material del semiespacio y velocidad de las ondas longitudinales; y no depende del coeficiente de Poisson y velocidad de ondas transversales. A la parte inferior del sistema le corresponde el comportamiento dinámico de la placa ante las ondas transversales y de Rayleigh. Los parámetros m_2 , B_2 , K_2 también dependen de las dimensiones de la placa y densidad del medio, pero a diferencia de los parámetros del sistema superior, dependen de μ y C_2 ; más no dependen de la velocidad de las ondas longitudinales. Asimismo, en el modelo se ha dividido la influencia de las ondas longitudinales en las transversales, así como las ondas Rayleigh en el movimiento de la placa.

Las ondas longitudinales crean la resistencia al movimiento de la placa (cimentación), dependiente de su desplazamiento y velocidad. Las ondas transversales y Rayleigh crean también resistencia,

dependiente de la aceleración del movimiento de la placa, que tuvo su repercusión en el origen de la masa m₂.

El modelo dinámico descrito fue determinado como un sistema con 1,5 grados de libertad, donde un grado de libertad se determina en la parte inferior del sistema y medio grado de libertad se registra en la parte superior de la misma.

Luego este modelo fue generalizado a las vibraciones horizontales y rotacionales de la cimentación, apoyado sobre base elástica con ley de variación lineal de las propiedades de deformación a través de la profundidad del suelo de fundación. En particular, la variación del módulo de deformación $E_{(Z)}$ de la base de fundación, se aproxima a la ley:

$$E_{(Z)} = E_o \left[tg\psi . \frac{z}{\alpha} + 1 \right]$$

Donde:

E_o: módulo de deformación del suelo en la superficie;

 z : coordenada de la profundidad del suelo de fundación, respecto a su superficie;

 Ψ : ángulo de fricción interna del suelo;

 $\alpha:1 \text{ m}$

La aproximación definida, describe la variación de las propiedades de deformación de la base hasta una profundidad 5α para las vibraciones verticales, 3α para las rotacionales y 2α para las horizontales.

Donde:

 $\alpha = \sqrt{\frac{A}{\pi}}$: radio asumido de la base de la cimentación, de área A.

Los cinco parámetros adimensionales del modelo mecánico de la base con 1,5 grados de libertad, representan una dependencia lineal de \sqrt{A} .

$$Y = Y_o + Y_1 \cdot tg\psi \cdot \sqrt{\frac{A}{\alpha}}$$

じろ

Donde:

Y: cualquier parámetro con índice o sin índice;

 b_{z1} , K_{z1} , m_z , b_{z2} , K_{z2} : coeficientes para las vibraciones verticales, donde el amortiguador b_{z1} y la rigidez K_{z1} corresponden a la parte superior del modelo (medio grado de libertad) y los coeficientes m_z , b_{z2} , K_{z2} a la parte inferior (un grado de libertad);

 $b_{\phi 1},~K_{\phi 1},~m_{\phi},~b_{\phi 2},~K_{\phi 2}$: parámetros análogos para las vibraciones rotacionales;

 b_{x1} , K_{x1} , m_x , b_{x2} , K_{x2} : coeficientes para las vibraciones horizontales Los miembros Y_0 , Y_1 se determinan por las tablas 2.2. y 2.3, dependientes del tipo de vibración y coeficiente de Poisson (μ) de la base de fundación.

T	ab	la	2.	2.

μ	b 021	K _{0Z1}	m _{0z}	b _{0Z2}	K _{0Z2}
0.25	5.34	21.80	2.80	6.21	7.50
0.35	6.44	26.30	3.12	6.90	8.40
0.45	10.53	43.00	3.29	7.50	9.20
μ	b _{0φ1}	K _{0φ1}	m ₀	b _{0φ2}	K _{0φ2}
0.25	1.36	5.60	1.00	1.60	7.50
0.35	1.63	6.70	1.03	1.70	7.90
0.45	2.50	10.70	0.84	1.60	7.30
μ	b _{0X1}	K _{0X1}	m _{ox}	b _{0x2}	K _{0X2}
0.25	3.10	12.40	1.80	5.20	7.60
0.35	3.10	12.40	1.90	5.70	8.30
0.45	3.10	12.40	2.10	6.40	9.20

Tabla 2.3.

μ	b _{1Z1}	K _{1Z1}	M _{1Z}	b _{1Z2}	K _{1Z2}
0.25	0.87	3.56	0.56	0.62	2.88
0.35	1.06	4.34	0.62	0.78	3.50
0.45	1.81	7.41	0.69	0.78	3.72
μ	b ₁₉₁	K ₁₉₁	m _{1e}	b _{1φ2}	K ₁₉₂
0.25	0.22	1.16	0.12	0.12	1.34
0.35	0.28	1.41	0.16	0.12	1.81
0.45	0.50	1.97	0.16	0.12	1.81
μ	b _{1X1}	K _{1X1}	M _{1X}	b _{1X2}	K _{1X2}
0.25	0.53	2.09	0.28	0.75	1.53
0.35	0.53	2.09	0.31	0.84	1.87
0.45	0.53	2.09	0.37	0.84	1.91

Los parámetros adimensionales Y se determinan en forma dimensional por las siguientes fórmulas:

 C^{I}

Para las vibraciones rotacionales:

$$K_{\varphi} = (C_2)^2 \cdot \rho \cdot k_{\varphi} \cdot a^3$$

$$B_{\varphi} = (C_2) \cdot \rho \cdot b_{\varphi} \cdot a^4$$

$$M_{\varphi} = \rho \cdot a^5 \cdot m_{\varphi}$$

Para las vibraciones horizontales (verticales):

$$K_{x(z)} = (C_2)^2 \cdot \rho \cdot k_{x(z)} \cdot a$$

 $B_{x(z)} = (C_2) \cdot \rho \cdot b_{x(z)} \cdot a^2$
 $M_{x(z)} = \rho \cdot a^3 \cdot m_{x(z)}$

Donde:

C₂: velocidad de propagación de la onda transversal.

 ρ : densidad del suelo de la base de fundación.

Considerando, que en el modelo analizado las conexiones con rigideces K₁ y K₂ están unidas consecutivamente, en el cálculo vamos a ingresar la rigidez equivalente determinada por la fórmula:

$$K = \frac{K_1 \cdot K_2}{K_1 + K_2}$$

El modelo dinámico V.A. Ilichev, descrito anteriormente, es estrictamente teórico, basado en la solución teórica del problema de interacción dinámica suelo-estructura, desde el punto de vista del modelo de semiespacio elástico.

C. Modelo dinámico A.E. Sargián

De acuerdo a tal modelo dinámico, en su análisis se ingresan parámetros cuasiestáticos de rigidez de la base de fundación K_x , K_{φ} , K_z ; que se determinan por las siguientes fórmulas:

$$K_x = \frac{28,8.(1-\mu^2).\rho.C_2^2.\sqrt{A}}{\pi.(7-8\mu)}$$

$$K_{\varphi} = \frac{8,52. \rho. C_2^2. I}{\sqrt{\pi}. (1 - \mu). \sqrt{A}}$$
$$K_z = \frac{\rho. C_2^2. \sqrt{A}}{\Phi. (1 - \mu^2)}$$

Donde:

 ρ : densidad del suelo de fundación;

A : área de la base de la cimentación;

I : momento de inercia del área de la base de la cimentación respecto al eje horizontal, que pasa por el centro de gravedad perpendicular al plano de vibración.

 $\Phi : 0.833$

 C₁: velocidad de propagación de las ondas longitudinales en el suelo de fundación;

C₂: velocidad de propagación de las ondas transversales.

De acuerdo a la concepción de semiespacio elástico, las velocidades de propagación de las ondas longitudinales y transversales se pueden calcular por las siguientes fórmulas:

$$C_1^2 = \frac{(1-\mu).E}{(1+\mu).(1-2\mu).\rho}$$
$$C_2^2 = \frac{E}{2.(1+\mu).\rho}$$

Donde:

E : módulo de elasticidad de la base de fundación.

D. Modelo dinámico de la Norma Rusa SNIP 2.02.05-87

Los coeficientes de rigidez de compresión elástica uniforme K_z , kN/m (T/m); desplazamiento elástico uniforme K_x , kN/m (T/m); compresión elástica no uniforme K_{φ} , kN.m (T.m) y desplazamiento elástico no uniforme K_{ψ} , kN.m (T.m); se calculan por las fórmulas:

$$K_z = C_z A$$

$$K_x = C_x A$$

$$K_\omega = C_\omega I_\omega$$

$$K_{\psi} = C_{\psi} I_{\psi}$$

Donde:

A: área de la base de la cimentación (m²).

 I_{φ} : momento de inercia (m⁴) del área de la base de la cimentación respecto al eje horizontal, que pasa por el centro de gravedad perpendicular al plano de vibración;

 I_{ψ} : momento de inercia (m⁴) del área de la base de la cimentación respecto al eje vertical, que pasa por el centro de gravedad de la cimentación (momento polar de inercia).

 C_X : Coeficiente de desplazamiento elástico uniforme en X.

 C_Y : Coeficiente de desplazamiento elástico uniforme en Y.

 ${\it C}_{\it Z}$: Coeficiente de compresión elástica uniforme.

 C_{φ} : Coeficiente de compresión elástico no uniforme.

 \mathcal{C}_{ψ} : Coeficiente de desplazamiento elástico uniforme.

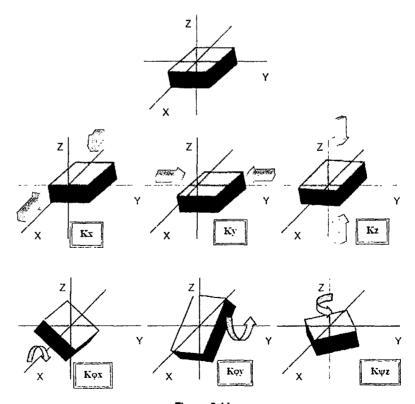


Figura 2.11

La principal característica elástica de la cimentación, es decir el coeficiente de compresión elástica uniforme C_z , kN/m3 (T/m3), se determina por medio de ensayos experimentales. En caso que no exista dicha información se puede determinar por la siguiente fórmula:

$$C_z = b_0 E \left(1 + \sqrt{\frac{A_{10}}{A}} \right)$$

Donde:

 b_0 : coeficiente (m-1) asumido para suelos arenosos igual a 1; para arenas arcillosas 1,2; para arcillas, cascajos, gravas, cantos rodados, arenas densas igual a 1,5;

E: módulo de deformación del suelo en la base de la cimentación, kPa (T/m²), determinadas por las tablas 3 y 4 del anexo del proyecto de investigación o en forma experimental;

 $A_{10}:10 \text{ m}^2$

Los coeficientes de desplazamiento elástico uniforme C_x , kN/m3 (T/m3); compresión elástica no uniforme C_{ψ} , kN/m3 (T/m3) y desplazamiento elástico no uniforme C_{ψ} , kN/m3 (T/m3); se determinan por las siguientes fórmulas:

$$C_x = 0.7C_z$$

$$C_{\varphi} = 2C_z$$

$$C_{\psi} = C_z$$

En las propiedades de amortiguación de la base de la cimentación, se deben considerar las amortiguaciones relativas ξ , determinado por ensayos de laboratorio.

En el caso que no existan datos experimentales, la amortiguación relativa para las vibraciones verticales ξ_z se puede determinar por las fórmulas:

Para las vibraciones establecidas (armónicas) o conocidas:

$$\xi_z = \frac{2}{\sqrt{C_z p_m}}$$

Para las vibraciones no establecidas (impulsos) o desconocidas:

$$\xi_z = 6 \sqrt{\frac{E}{C_z p_m}}$$

Donde:

E: módulo de deformación del suelo en la base de la cimentación.

 C_z : coeficiente de compresión elástica uniforme.

 p_m : presión estática media en la base de la cimentación.

$$p_m \leq \gamma_{ts} R$$

Siendo:

 γ_{ts} : coeficiente de la condición de trabajo del suelo de fundación, asumido igual a 0,7 para arenas saturadas de grano fino o pólvora y arcilla de consistencia movediza; y para el resto de suelos es igual a 1;

R: resistencia de cálculo de suelo de fundación, determinado por la norma rusa SNIP 2.02.01-83 o por las tablas 1 – 5 del anexo.

Las amortiguaciones relativas para las vibraciones horizontales y rotacionales respecto a sus ejes horizontal y vertical, se pueden determinar por las siguientes fórmulas:

$$\xi_x = 0.6 \xi_z$$

$$\xi_{\varphi} = 0.5\xi_z$$

$$\xi_{\psi} = 0.3\xi_z$$

Como característica de amortiguación, también se puede usar el módulo de amortiguación para las vibraciones verticales Φ_z , determinado por las siguientes fórmulas:

Para las vibraciones establecidas (armónicas) o conocidas:

$$\Phi_z = \frac{16}{\sqrt{C_z}}$$

Para las vibraciones no establecidas (impulsos) o desconocidas, el valor de Φ_z se incrementa en dos veces, en comparación con la establecidas (armónicas) o conocidas.

Los módulos de amortiguación para las vibraciones horizontales y rotacionales respecto a sus ejes horizontal y vertical, se pueden determinar por las siguientes fórmulas:¹¹

$$\Phi_x = 0.6\Phi_z$$

$$\Phi_{\varphi} = 0.5 \Phi_{\rm z}$$

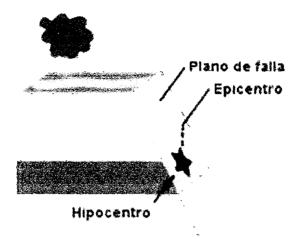
$$\Phi_{\psi}=0.3\Phi_{\rm z}$$

2.3. HIPÓTESIS

Demostrar la reducción de esfuerzos en los diferentes elementos estructurales debido a que parte de la energía generada por el sismo en la estructura, será absorbida ahora por el suelo de fundación, coadyuvando a un mejor comportamiento estructural.

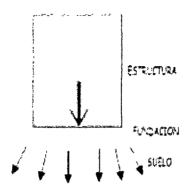
2.4. DEFINICIÓN DE TÉRMINOS

- ACELERACIÓN: Aumento de la velocidad del movimiento del suelo en función del tiempo.
- ACELERÓGRAFO. Instrumento que registra la aceleración del suelo en función del tiempo en el campo cercano.


¹¹Dr. Genner Villarael Castro. Interacción sísmica-suelo estructura en edificaciones con zapatas aisladas. Libro Premio Nacional ANR **2006**

- ACELEROGRAMA. Dícese al registro de la aceleración del suelo en función del tiempo.
- ÁNGULO DE FRICCIÓN INTERNA: Es la representación matemática del coeficiente de rozamiento; es una propiedad de los materiales granulares
- BASE DE FUNDACIÓN: Es la parte de la construcción que se apoya sobre el terreno, constituye así la base de la superestructura.
- CARGA EXCÉNTRICA: Carga aplicada a una columna o pilote que no es simétrica respecto del eje central produciendo un momento flector. También llamada fuerza excéntrica.
- CATÁLOGO SÍSMICO. Es una base de datos válida para realizar cualquier estudio en sismología. En este sentido, el catálogo sísmico debe contener todos los parámetros que caracterizan a un sismo calculado en las mismas condiciones de contorno a fin de constituir un catálogo homogéneo.
- CENTRO DE MASAS: Es la posición geométrica de un cuerpo rígido en la cual se puede considerar concentrada toda su masa; corresponde a la posición promedio de todas las partículas de masa que forman el cuerpo rígido.
- CIMENTACIÓN: Se denomina cimentación al conjunto de elementos estructurales cuya misión es transmitir las cargas de la edificación al suelo.
 Debido a que la resistencia del suelo es, generalmente, menor que los pilares o muros que soportará, el área de contacto entre el suelo y la cimentación será proporcionalmente más grande que los elementos soportados.
- COEFICIENTE DE POISSON: El coeficiente de Poisson es una constante elástica que proporciona una medida del estrechamiento de sección de un prisma de material elástico lineal e isótropo. Relación entre la deformación lateral y la correspondiente deformación longitudinal, en un cuerpo elástico sometido a un esfuerzo longitudinal.
- COEFICIENTES DE RIGIDEZ: Los coeficientes de rigidez son magnitudes físicas que cuantifican la rigidez de un elemento resistente bajo diversas configuraciones de carga.
- **DESPLAZAMIENTO**. Es la longitud de la trayectoria comprendida entre la posición inicial y la posición final de un punto material.

- DIAFRAGMAS RÍGIDOS: El diafragma rígido es una lámina que no se deforma axialmente ni se lesiona ante cargas contenidas en su plano. Son edificaciones en los que las losas de piso, el techo y la cimentación, actúan como elementos que integran a los muros portantes y compatibilisan sus desplazamientos laterales.
- DISEÑO SISMORRESISTENTE: Es una concepción de la ingeniería estructural que predice y evalúa con aceptable.
- DISTANCIA EPICENTRAL. Define la longitud del círculo máximo entre el epicentro y una estación de registro, medida en grados o Km. (1 grado @ 111.11 Km.).
- ELEMENTOS ESTRUCTURALES: Son los elementos construidos en concreto reforzado u otro material para que soporten las cargas en una construcción; en el caso de edificaciones menores, estos son los muros estructurales, las vigas de fundación, las vigas de amarre, las columnas o columnetas de confinamiento, las cintas de amarre y los techos o cubiertas.
- ESCALAS DE MAGNITUDES SÍSMICAS. Parámetros que clasifican los sismos de acuerdo a las amplitudes y períodos, y duración de las ondas registradas en los sismógrafos. Son escalas de valores continuos sin límites superior e inferior. Los valores extremos dependen del fenómeno y la naturaleza. Este parámetro da una idea del tamaño del sismo: Dimensión de la zona de ruptura y la cantidad de energía liberada en la zona hipocentral.
- ESTACIÓN U OBSERVATORIO SISMOLÓGICO. La ubicación de un instrumento para registrar sismos, sea sismógrafo o acelerógrafo.
- FALLA. Define a una fractura geológica a lo largo de lo cual se ha producido un desplazamiento de dos bloques adyacentes en tiempos históricos o donde se han localizado focos de terremotos. El desplazamiento puede ser de milímetros a centenas de kilómetros.
- FOCO O HIPOCENTRO. Punto en el interior de la Tierra en donde se produce el terremoto o desde el cual se produce la liberación de energía.
- FRECUENCIA: Frecuencia es una medida que se utiliza generalmente para indicar el número de repeticiones de cualquier fenómeno o suceso periódico.


- FUERZAS AXIALES: Fuerza que actúa a lo largo del eje longitudinal de un miembro estructural aplicada al centroide de la sección transversal del mismo produciendo un esfuerzo uniforme. También llamada carga axial.
- FUERZAS CORTANTES: El esfuerzo cortante, de corte, de cizalla o de cortadura es el esfuerzo interno o resultante de las tensiones paralelas a la sección transversal de un prisma mecánico; como por ejemplo una viga o un pilar. Se designa variadamente como T, V o Q
- INTENSIDAD DE TERREMOTOS: La intensidad de los terremotos se refiere a la magnitud del movimiento sísmico y, por tanto, está en relación con la energía liberada por la Tierra en dicho movimiento.
- ISOTRÓPICO: Dícese del material que posee las mismas propiedades físicas en todas las direcciones. También llamado isótropo.
- MECÁNICA DE SUELOS: Es la aplicación de las leyes de la física y las ciencias naturales a los problemas que involucran las cargas impuestas a la capa superficial de la corteza terrestre.
- MICROZONIFICACIÓN SÍSMICA. La división de una ciudad en áreas de diferentes niveles de peligrosidad sísmica según características locales como geología superficial y la topografía.
- MODELOS DINÁMICOS: Es el que describe cómo responde la comunidad de objetos a un estímulo específico, ya sea este un estimulo interno, es decir generado dentro de la misma clase, o un estimulo externo.
- MODOS DE VIBRACIÓN: Un modo de vibración es un patrón o forma característica en el que vibrará un sistema mecánico.
- MOMENTOS FLECTORES: Un momento de fuerza resultante de una distribución de tensiones sobre una sección transversal de un prisma mecánico flexionado o una placa que es perpendicular al eje longitudinal a lo largo del que se produce la flexión.
- MOMENTOS TORSORES: Se denomina momento torsor a la componente paralela al eje longitudinal del momento de fuerza resultante de una distribución de tensiones sobre una sección transversal del prisma mecánico.

 MOVIMIENTOS SÍSMICOS: Un movimiento sísmico es un movimiento vibratorio producido por la pérdida de estabilidad de masas de corteza. Cuando el movimiento llega a la superficie y se propaga por esta le llamamos terremoto.

- ONDA SÍSMICA: Perturbaciones elásticas de los materiales terrestres. Se pueden clasificar en ondas de cuerpo (P y S) y superficiales (Love y Rayleigh).
 Las primeras se transmiten en el interior de la tierra, en todas direcciones.
- ONDAS LONGITUDINALES (P). Ondas sísmicas en las cuales el movimiento de la partícula se realiza en la misma dirección en la cual se propagan las ondas. Las ondas P son de alta frecuencia y longitud de onda corta.
- ONDAS TRANSVERSALES (S). Llamadas también ondas secundarias de cortante o rotacionales, se representan con la letra "S"; se propagan a menor velocidad que las ondas P y provocan oscilaciones y distorsiones sin cambios de volumen en las partículas que se encuentran en su trayectoria.
 - La relación entre las velocidades de las ondas P y S están dadas por Vp/Vs = 1.7, A pesar que las ondas S son más lentas que las ondas P, transmiten mayor energía y son las que provocan mayores daños en las estructuras.
- ONDAS LOVE (L). Son ondas de corte horizontal, que producen vibraciones perpendiculares a la dirección de transición de la energía.
- ONDAS RAYLEIGH (R). Son ondas donde las partículas vibran en un plano vertical, siguiendo una trayectoria elíptica. Su efecto es de compresión, dilatación y cizalla.

- PELIGROSIDAD SÍSMICA. Define la probabilidad de que haya un movimiento fuerte de cierta intensidad en un lugar dentro de un periodo de tiempo especificado.
- PERIODO DE RETORNO. Define el lapso de tiempo promedio entre las ocurrencias de terremotos con un determinado rango de magnitud; es igual a la recíproca de la frecuencia de ocurrencia.
- PERIODOS DE VIBRACIÓN: Es el tiempo transcurrido entre dos puntos equivalentes de la onda.
- PÓRTICO: Un pórtico es un espacio arquitectónico conformado por una galería de columnas adosada a un edificio, abierta al aire libre, y situado generalmente ante su acceso principal.
- RIGIDEZ: Es la capacidad de un objeto sólido o elemento estructural para soportar esfuerzos sin adquirir grandes deformaciones o desplazamientos.
- SISMO: Es una sacudida del terreno que se produce debido al choque de las
 placas tectónicas y a la liberación de energía en el curso de una reorganización
 brusca de materiales de la corteza terrestre.
- SISTEMA DINÁMICO: El comportamiento en dicho estado se puede caracterizar determinando los tímites del sistema, los elementos y sus relaciones; de esta forma se puede elaborar modelos que buscan representar la estructura del mismo sistema.
- SISTEMA ESTRUCTURAL: Un sistema estructural es el modelo físico que sirve de marco para los elementos estructurales, y que refleja un modo de trabajo. Un objeto puede tener, a su vez, una mezcla de sistemas estructurales.
- SUELO DE FUNDACIÓN: Parte del suelo donde se apoya la estructura, es el encargado de recibir y terminar de disipar las cargas que le transfiere la fundación.

- SUELOS BLANDOS: En general el término de suelo blando se aplica a las arcillas (suelos cohesivos) con una resistencia de 2 a 4 golpes en la prueba de penetración estándar (resistencia a la compresión simple de 0.25 a 0.50 kg/cm2)
- SUELOS COMPRESIBLES: Se incluyen aquí los suelos de elevada deformabilidad que pueden dar lugar a asientos de entidad de los rellenos que se cimientan sobre ellos, provocando deformaciones en los firmes.
- VIBRACIÓN: Se denomina vibración a la propagación de ondas elásticas produciendo deformaciones y tensiones sobre un medio continuo (o posición de equilibrio).
- ZAPATAS: Una zapata (a veces llamada poyo) es un tipo de cimentación superficial (normalmente aislada), que puede ser empleada en terrenos razonablemente homogéneos y de resistencias a compresión medias o altas.
- ZONIFICACIÓN SÍSMICA. Mapa de una región que indica áreas donde el nivel de peligrosidad sísmica es casi constante o donde se exigen los mismos criterios para el diseño sismorresistente.

2.5. VARIABLES DE ESTUDIOS

2.5.1. IDENTIFICACIÓN DE VARIABLES

Variable Independiente:

VI: SUELO DE FUNDACIÓN

Variable Interviniente:

Vi: MODELO DINÁMICO SUELO - ESTRUCTURA

Variable dependiente:

VD: ESTRUCTURA

2.5.2. DEFINICIÓN OPERATIVA DE LAS VARIABLES E INDICADORES

TIPO DE VARIABLE	INDICADORES
VARIABLE INDEPENDIENTE - Suelo de fundación	El suelo donde está apoyada la estructura tiene una participación importante considerando la interacción en forma dinámica, considerando sus propiedades físico – mecánicos, en el proceso de interacción suelo - estructura.
VARIABLE INTERVINIENTE - Modelo dinámico suelo - estructura	La formulación tradicional del cálculo de edificaciones considerando el empotramiento perfecto de la columna con la cimentación, no muestra el verdadero comportamiento de la estructura, esto nos lleva a la necesidad de estudiar una correcta formulación de las condiciones de frontera.
VARIABLE DEPENDIENTE - Estructura	El análisis integral de la estructura, conlleva a mejorar el comportamiento estructural, determinados en sus modos de vibración y frente a eventos sísmicos.

CAPÍTULO III

METODOLOGÍA DE LA INVESTIGACIÓN

3.1. ÁMBITO DE ESTUDIO

Edificación de la residencia estudiantil de la Universidad Nacional de Huancavelica, ubicada en Av. Universitaria – Paturpampa – Huancavelica.

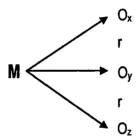
3.2. TIPO DE INVESTIGACIÓN

De acuerdo al fin que persigue: APLICADA; porque se interesa en resolver problemas prácticos con la aplicación de conocimientos teóricos, pues busca conocer para hacer, para actuar, para construir y/o modificar.

3.3. NIVEL DE INVESTIGACIÓN

El estudio de investigación arribo hasta un nivel **Explicativo**; pues se centra en buscar las causas o los porqués de la ocurrencia del fenómeno, de cuáles son las variables que presenta y de cómo se dan sus interrelaciones. Pues el objetivo es encontrar las relaciones de causa-efecto que se dan entre las variables con el objeto de conocerlos con mayor profundidad.

3.4. MÉTODO DE INVESTIGACIÓN


- Método descriptivo: Consiste en escribir e interpretar sistemáticamente un conjunto de hechos y fenómenos y relacionarlos con otros, tal como se dan en el presente, en su estado actual y en su forma natural, con mínimas posibilidades de control sobre las variables de estudio.
- Método estadístico: Es un método para tratar datos numéricos. Se basa en el empleo de los números, la agrupación de los mismos, la comparación de los hechos.
- Método bibliográfico documental: Consiste en recopilar información de fuentes secundarias, contenidas en libros, artículos de revistas, crónicas,

publicaciones, investigaciones. Su propósito es sistematizar la información y hace uso de procedimientos analítico - cualitativos e interpretativos.

Por lo que para el siguiente proyecto de tesis se empleará los métodos descriptivo, estadístico y bibliográfico.

3.5. DISEÑO DE INVESTIGACIÓN

El diseño utilizado en el presente trabajo de investigación es no experimental: descriptivo, correlacional y transversal: No experimental porque no se pueden manipular variables ni asignar aleatoriamente a la unidad de análisis, descriptivo porque nos permitirá recoger información acerca de la variable de estudio; correlacional porque se orienta a la determinación del grado de relación existente entre las variables de una misma muestra; transversal porque la medición de las variables se da en un momento dado.

O_x, O_y y O_z: Indican las observaciones obtenidas en cada una de las tres variables distintas.

M: es la muestra.

r : es la relación entre las variables.

3.6. POBLACIÓN Y MUESTRA.

 Población : Edificación de la residencia del la Universidad Nacional de Huancavelica Muestra : Edificación de la residencia del la Universidad Nacional de Huancavelica

3.7. TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN DE DATOS

Técnicas de recolección de datos

- Observación y evaluación.
- Revisión Bibliográfica.
- Revisión Documentaria.
- Realizar estudios de sitio.
- Entrevistas

Instrumentos de recolección de datos

- Libros y archivos
- Estudio definitivo del proyecto (Expediente técnico)
- Estudio de sitio
- Cámara fotográfica
- Resultados obtenidos
- Otros

3.8. PROCEDIMIENTO DE RECOLECCIÓN DE DATOS

- Revisión documentaria (expediente técnico de la edificación de la residencia universitaria)
- Observación y evaluación in situ de la estructura de la residencia universitaria.
- Prospección visual del terreno y realización de calicatas para poder obtener las características físico-mecánicas del suelo de fundación de la estructura de la residencia universitaria.
- Revisión de las normas peruanas, E-020 "norma para cargas", E-030 "norma para diseño sísmico resistente", E-060 "norma para concreto armado" y E-070 "norma para albañilería".

 Entrevistas con profesionales especializados en la realización de estudios en Edificaciones y mecánica de suelos.

3.9. TÉCNICAS DE PROCESAMIENTO Y ANÁLISIS DE DATOS

En el presente proyecto de investigación se usará:

Técnicas cuantitativas: La que implica el conjunto descriptivo, por lo que se usará una estadística descriptiva, en el cual se emplearán:

- Medidas de tendencia central (media, mediana, moda).
- Medidas de dispersión (desviación estándar, varianza, etc).

Análisis e interpretación de datos

- Tabulación de datos.
- Interpretación de cuadros estadísticos.
- Gráficos estadísticos.

CAPÍTULO IV RESULTADOS

4.1. PRESENTACIÓN DE RESULTADOS:

4.1.1. TAMAÑO MUESTRAL

A. Ubicación:

Departamento : Huancavelica
Provincia : Huancavelica
Distrito : Huancavelica

Lugar : Av. Universitaria - Paturpampa

B. Área del proyecto:

La superficie del terreno es de:

Área total construida : 2,502.53 m²
Área construida del sótano : 198.40 m²
Área construida del 1er piso : 733.10 m²
Área construida del 2do piso : 777.85 m²
Área construida del 3er piso : 760.97 m²
Área construida del 4to piso : 230.61 m²
Área techada : 883.85 m²

C. Datos Generales:

Sistema estructural : Aporticado

Uso : Residencia estudiantil

N° de pisos : 04 pisos + azotea

fc (losa aligerada) : 210 kg/cm² fc (columnas y vigas) : 210 kg/cm²

f'c (cimentación) : 210 kg/cm²
f'c (muros reforzados) : 210 kg/cm²
f'c (vigas de cimentación) : 210 kg/cm²
fy : 4200 kg/cm²

D. Parámetros sísmicos:

Factor sísmico : Z = 0.30Factor de amplificación del suelo : S = 1.00Factor que define la plataforma del espectro : $T_p = 0.40$ Factor de uso de edificación : U = 1.50

Factor de reducción : $R_x = 8$ y $R_y = 8$

E. Arquitectura

E.1. Descripción de la arquitectura

El edificio de la residencia universitaria de la universidad Nacional de Huancavelica, se ubica en la avenida Universitaria — Paturpampa, correspondiente al distrito y provincia de Huancavelica. El terreno tiene un área de 2,502.53 m2.

Dicha residencia está compuesta de 4 niveles, los cuales cuentan con un sótano, con los ambientes de guardianía, cuarto de basuras, garaje y escaleras; el primer piso y segundo piso tienen ambientes para sala de lectura, sala de internet, dormitorios, cocina – comedor, pasadizos; el tercer piso tiene los ambientes de sala de lectura, sala de internet, dormitorios, cocina – comedor, estar; el cuarto piso tiene ambientes para dormitorios unipersonales (dormitorio, sala, cocineta y SS.HH.), lavandería, tendales y una terraza. Ver planos en los Anexos.

4.1.2. SUELO DE FUNDACIÓN

En el presente punto, se mencionará lo más relevante para la estructuración y modelación de la edificación.

Se modeló la superficie del terreno, con los puntos del levantamiento topográfico de la tabla N° 01 de los Anexos, realizado en la zona, el cual se muestra en la Figura 4.1.

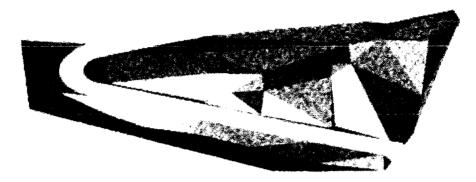
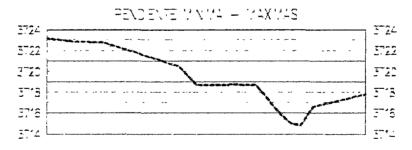
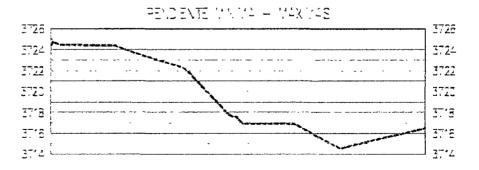




Figura. 4.1 Modelación de superficie de fundación por Civil 3D

El terreno presenta una superficie inclinada con pendientes como muestran la figura 4.2.

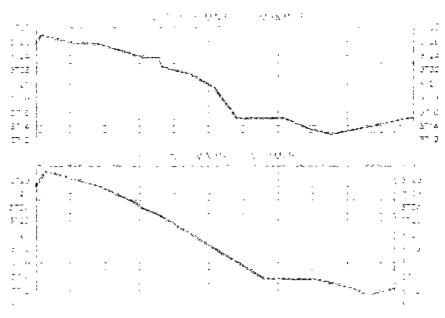


Figura. 4.2 Pendientes mínimas y máximas del terreno por Civil 3D

El terreno en la prospección visual presenta una superficie rocosa, la que podemos observar en los cortes realizados en los linderos del terreno construido de la residencia estudiantil, observados en las imágenes 01 y 02.

A. CARACTERÍSTICAS DEL SUELO DE FUNDACIÓN

Para determinar las características del suelo de fundación se tomaron de los ensayos y valores de las tablas 2-5 del anexo, los cuales mostramos a continuación.

Tipo de suelo : roca dura

Modulo de elasticidad : $4.8 \text{ Gpa} = 4.8 \times 10^{9} (0.1 \text{ kg/m}^2) = 48 \times 10^{7} \text{ kg/m}^2$

Densidad del suelo : $2800 \text{ kg/m}^3 = 0.2854 \text{ T.s}^2/\text{m}^4 = 2.9 \text{ KN.s}^2/\text{m}^4$

Coeficiente de Poisson : 0.28 Angulo de fricción : 35°

Angulo de fricción : 35°

4.1.3. ANÁLISIS ESTRUCTURAL

A. ANÁLISIS ESTÁTICO

Se ha realizado el presente análisis para comprobar que el cortante en la base determinado por el método dinámico no sea menor que el 80% del

cortante hallado por el método estático para la estructura de la residencia estudiantil de la universidad nacional de Huancavelica.

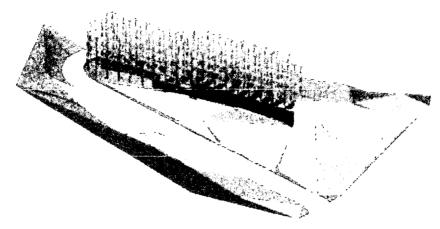


Figura. 4.3 Modelamiento de la estructura sobre la superficie de fundación por civil 3D

A.1. Calculo de masas y pesos de la edificación

Para el metrado de cargas de la estructura se consideró los pesos unitarios del Anexo 1 y cargas mínimas repartidas (Tabla 1) de la norma E.020. para la presente tesis.

A continuación se muestran los metrados verticales en el bloque 3 de la residencia estudiantil para el análisis.

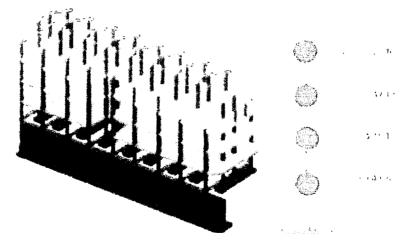


Figura. 4.4 Cargas verticales por piso

Peso de la edificación (P) = 974.24 Tn

 El peso (P) se calculó adicionando a la carga permanente y total de la edificación el 50% de la carga viva, considerando una edificación de categoría A.

A.2. Cálculo de la rigidez lateral por piso

Para el cálculo de rigidez lateral se tomó en consideración las fórmulas de Mutto y Wilburt, las que se consideran para un análisis estático, teniendo en cuenta el empotramiento de la base.

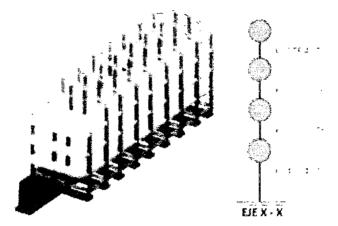


Figura. 4.5 Rigideces laterales en dirección del eje X-X

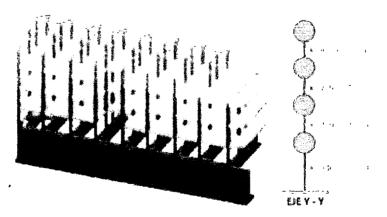


Figura. 4.6 Rigideces laterales en dirección del eje Y-Y

A.3. Configuración estructural (regularidad de la edificación)

En la Tabla 4.1 se presentan las verificaciones de la regularidad de la estructura en la altura y en planta, según lo indicado en el Art. 11 de la Norma E.030.

A.4. Evaluación de la estructura

De la norma sismo resistente (E.030) se tiene los siguientes factores para la evaluación de la cortante basal sísmica:

> Factor de zona (Z) : 0.3

Parámetros de suelo : S1

 $T_p(s) = 0.4$; S = 1

> Categoría de Edificación (U): 1.5

ightharpoonup Periodo fundamental : $T = \frac{h_n}{c_T}$

T: periodo fundamental de la estructura

h_n: Altura total de la edificación = 12.61 m

C_T: coeficiente para estimar el periodo = 35

$$T = \frac{12.61}{35} = 0.3603$$

> Factor de amplificación sísmica: $C = 2.5 \left(\frac{T_P}{T}\right)$; $C \le 2.5$

$$C = 2.5 \left(\frac{0.4}{0.3603} \right) = 2.78 \approx C = 2.5$$

> Coeficiente de reducción sísmica (R) : 8

Luego:
$$V = \frac{zucs}{R}P$$

$$V = \frac{0.3 * 1.5 * 2.5 * 1}{8} * 974.24 Tn$$

$$V = 137 Tn$$

Para cada una de las direcciones consideradas en el análisis, la fuerza cortante en la base del edificio no podrá ser menor que el 80 % del valor calculado para estructuras regulares.

$$V_{\text{estático}} = 0.80 \text{ x (137 tn)}$$

 $V_{\text{estático}} = 109.6 \text{ tn}$

TABLA N°4.1 Configuración estructural (regularidad de la edificación)

	Piso	1er		2do		3ro		4to		0 " "	01
IRREGULARIDADES EN ELEVACIÓN	Parámetros	х-х	Y-Y	х-х	Y-Y	х-х	Y-Y	х-х	Y-Y	Condición	Obs.
PISO FLEXIBLE	Rigidez lateral (Tn/cm)	476.47	240.96	332.65	209.59	332.65	209.59	178.42	85.96	K _i <0.7K _s	cumple
IRREGULARIDAD DE MASAS	Masas (Tn)	289.43		284.25		280.47		125.27		M<1.5M'	cumple
IRREGULARIDAD GEOMÉTRICA	Área Planta (m2)	353.44		353.44		353.44		244.12		A<1.3A'	cumple
DISCONTINUIDAD DEL SISTEMA	Elementos verticales	No		No		No		No		Desalin.	cumple

IRREGULARIDADES EN PLANTA	PISO	1er		2do		3ro		4to		Condición	Obs.
IRREGULARIDAD TORSIONAL	Desplazamiento (mm)	22.80	12.00	49.20	27.60	69.00	39.60	82.80	51.00		cumple
ESQUINAS ENTRANTES	Longitud	33.70		33.70		33.70		27.4		0.15L <l'< td=""><td>cumple</td></l'<>	cumple
DISCONTINUIDAD DEL DIAFRAGMA	Área total=353.44	15.20		15.20		15.20		0		A<0.5A'	cumple

Se ha realizado el presente análisis para comprobar que el cortante en la base determinado por el método dinámico no sea menor que el 80% del cortante hallado por el método estático para estructuras regulares (Art. 18.2.d – Norma E.030).

Sentido X-X: 147.05 tn > 109.06 tn → OK!!

Sentido Y-Y: 147.05 tn > 109.06 tn → OK!!

B. INTERACCIÓN SUELO - ESTRUCTURA

A fin de obtener un comportamiento más cercano a la realidad, se ha incluido la interacción suelo estructura en el análisis estructural, para lo cual detallaremos los parámetros necesarios para el desarrollo de la investigación.

1. Calculo de coeficientes de rigidez

1.1. Modelo dinámico D.D. BARKAN - O.A. SAVINOV

De acuerdo a la tabla 2.1. Asumimos Co=3.00 kg/cm³ (roca), cuando p_0 = 0.2 kg/cm².

Calculamos la magnitud de la presión estática del suelo "p" para cada zapata

$$\rho = \frac{974240 + 333120}{10.61 * 9 + 97.16 * 1} = 6786.2 \left(\frac{kg}{m^2}\right)$$

De la formula, calculamos Do

$$D_o = \frac{1 - 0.28}{1 - 0.5 * 0.28} \cdot 3.00 = 2.51 \left(\frac{\text{kg}}{\text{cm}^3}\right)$$

Ahora calculamos los coeficientes C_z , C_x , C_ϕ , para las zapatas combinadas por la formula:

$$\begin{split} C_z &= C_o \left[1 + \frac{2(a+b)}{\Delta.A} \right] \sqrt{\frac{\rho}{\rho_o}} \\ C_z &= 3.00 \left[1 + \frac{2(1.4+7.58)}{1x10.61} \right] * \sqrt{\frac{0.6786}{0.2}} = 14880 \, \frac{T}{m^3} \\ C_x &= D_o \left[1 + \frac{2(a+b)}{\Delta.A} \right] \sqrt{\frac{\rho}{\rho_o}} \\ C_X &= 2.51 \left[1 + \frac{2(1.4+7.58)}{1x10.61} \right] * \sqrt{\frac{0.6786}{0.2}} = 12450 \, \frac{T}{m^3} \\ C_\phi &= C_o \left[1 + \frac{2(a+3b)}{\Delta.A} \right] \sqrt{\frac{\rho}{\rho_o}} \\ C_{\phi X} &= 3 * \left[1 + \frac{2(1.4+3*7.58)}{1x10.61} \right] * \sqrt{\frac{0.6786}{0.2}} \\ &= 30671 \, \frac{T}{m^3} \\ C_{\phi Y} &= 3 * \left[1 + \frac{2(3*1.4+7.58)}{1x10.61} \right] * \sqrt{\frac{0.6786}{0.2}} \\ &= 17797 \, \frac{T}{m^3} \end{split}$$

Ahora calculamos los coeficientes Cz, Cx, C ϕ , para la cimentación del muro:

$$\begin{split} C_z &= C_o \left[1 + \frac{2(a+b)}{\Delta . A} \right] \sqrt{\frac{\rho}{\rho_o}} \\ C_z &= 3.00 * \left[1 + \frac{2(34.7 + 2.80)}{1x97.16} \right] * \sqrt{\frac{0.6786}{0.2}} = 9792 \; \frac{T}{m^3} \end{split}$$

$$\begin{split} C_x &= D_o \left[1 + \frac{2(a+b)}{\Delta . A} \right] \sqrt{\frac{\rho}{\rho_o}} \\ C_X &= 2.51 * \left[1 + \frac{2(34.7 + 2.80)}{1x97.16} \right] * \sqrt{\frac{0.6786}{0.2}} = 8192 \; \frac{T}{m^3} \\ C_\phi &= C_o \left[1 + \frac{2(a+3b)}{\Delta . A} \right] \sqrt{\frac{\rho}{\rho_o}} \\ C_{\phi X} &= 3 * \left[1 + \frac{2(34.7 + 3 * 2.8)}{1x97.16} \right] * \sqrt{\frac{0.6786}{0.2}} \\ &= 10429 \; \frac{T}{m^3} \\ C_{\phi Y} &= 3 * \left[1 + \frac{2(3 * 34.7 + 2.8)}{1x97.16} \right] * \sqrt{\frac{0.6786}{0.2}} \\ &= 17686 \; \frac{T}{m^3} \end{split}$$

Determinamos los coeficientes de rigidez K_z , K_x , K_ϕ , para las zapatas combinadas por la fórmula:

$$\begin{split} K_z &= C_z A \\ K_z &= 14880*10,\!61 = 157877\,\text{T/m} \\ K_x &= C_x A \\ K_x &= 12450*10.61 = 132091\,\text{T/m} \\ K_\phi &= C_\phi I \\ K_{\phi x} &= 30671*\frac{1.40*7.58^3}{12} = 1558412\,\text{T/m} \\ K_{\phi y} &= 17797*\frac{7.58*1.40^3}{12} = 30847\,\text{T/m} \end{split}$$

Determinamos los coeficientes de rigidez K_z , K_x , K_ϕ , para los cimientos del muro por la fórmula:

$$\begin{split} K_z &= C_z A \\ K_z &= 9792*97.16 = 951390 \, \text{T/m} \\ K_x &= C_x A \\ K_x &= 8192*97.16 = 795935 \, \text{T/m} \\ K_\phi &= C_\phi I \\ K_{\phi x} &= 10429*\frac{34.70*2.80^3}{12} = 662011 \, \text{T/m} \\ K_{\phi y} &= 17686*\frac{2.80*34.70^3}{12} = 172422854 \, \text{T/m} \end{split}$$

1.2. MODELO DINÁMICO V.A. ILICHEV

Calculamos las velocidades de propagación de las ondas longitudinales y transversales con las siguientes fórmulas:

$$C_1^2 = \frac{(1-\mu). E}{(1+\mu). (1-2\mu). \rho} \rightarrow C_1$$

$$= \sqrt{\frac{(1-0.28).4707267}{(1+0.28)x(1-2x0.28)x2.854}}$$

$$= 1452 \text{ m/s}$$

$$C_2^2 = \frac{E}{2.(1 + \mu).\rho} \rightarrow C_2 = \sqrt{\frac{4707267}{2.(1 + 0.28)x2.854}}$$

= 803 m/s

Calculamos los coeficientes de rigidez por la tabla N° 2.2 cuando $\mu = 0.28 \label{eq:mu}$

$$K_{0Z1} = 23.15$$
 $K_{0\phi 1} = 5.93$ $K_{0X1} = 12.4$ $K_{0Z2} = 7.77$ $K_{0\phi 2} = 7.62$ $K_{0X2} = 7.81$

Ahora cuando $\mu = 0.28$, calculamos por la tabla N° 2.3

$$K_{121} = 3.79$$
 $K_{1\phi 1} = 1.24$ $K_{1X1} = 2.09$ $K_{1Z2} = 3.10$ $K_{1\phi 2} = 1.48$ $K_{1X2} = 1.63$

Determinamos los coeficientes cuando $\psi = 35^{\circ}$, en la fórmula:

$$Y = Y_o + Y_1 \cdot tg\psi \cdot \sqrt{\frac{A}{\alpha}}$$

En zapatas combinadas de los ejes 13 – 21, tramo B - D

$$k_{Z1} = 23.15 + 3.79 \cdot tg(35) \cdot \sqrt{\frac{10.61}{1}} = 31.79$$

$$k_{Z2} = 7.77 + 3.10. tg(35). \sqrt{\frac{10.61}{1}} = 14.84$$

En cimientos de muros de los ejes A - A, tramo 13 - 21

$$k_{Z1} = 23.15 + 3.79 \cdot tg(35) \cdot \sqrt{\frac{97.16}{1}} = 49.31$$

$$k_{Z2} = 7.77 + 3.10 \cdot tg(35) \cdot \sqrt{\frac{97.16}{1}} = 29.17$$

El coeficiente equivalente k_{Z} lo calculamos por la siguiente fórmula:

$$k_{Z} = \frac{K_{1}.K_{2}}{K_{1} + K_{2}}$$

Coeficiente kz, para zapatas combinadas.

$$k_Z = \frac{31.79 * 14.84}{31.79 + 14.84} = 10.12$$

Coeficiente kz, para cimentación de muro.

$$k_Z = \frac{49.31 * 29.17}{49.31 + 29.17} = 18.33$$

Ahora determinamos el valor del coeficiente de rigidez de compresión elástica uniforme:

$$K_{x(z)} = (C_2)^2 \cdot \rho \cdot k_{x(z)} \cdot \alpha, \quad si: \alpha = \sqrt{\frac{A}{\pi}}$$

Para zapatas combinadas:

$$K_{(z)} = 803^2 * 0.29 * 10.12 * \sqrt{\frac{10.61}{\pi}} = 3477702 \frac{T}{m}$$

Para cimiento de muro:

$$K_{(z)} = 803^2 * 0.29 * 18.33 * \sqrt{\frac{97.16}{\pi}} = 19061645 \frac{T}{m}$$

Análogamente, calculamos los coeficientes kx1 y kx2:

En zapatas combinadas:

$$k_{X1} = 12.4 + 2.09. \text{ tg}(35). \sqrt{\frac{10.61}{1}} = 17.17$$

$$k_{X2} = 7.81 + 1.63. tg(35). \sqrt{\frac{10.61}{1}} = 11.53$$

En cimentaciones de muro:

$$k_{X1} = 12.4 + 2.09. \text{ tg}(35). \sqrt{\frac{97.16}{1}} = 26.83$$

$$k_{X2} = 7.81 + 1.63. tg(35). \sqrt{\frac{97.16}{1}} = 19.06$$

En este caso, el coeficiente equivalente k_X será igual a la suma de los coeficientes calculados anteriormente:

En zapatas combinadas:

$$k_X = 17.17 + 11.53 = 29.70$$

En cimentaciones de muro:

$$k_x = 26.83 + 19.06 = 65.72$$

Ahora calculamos el coeficiente de rigidez de desplazamiento elásticos uniforme, a través de la formula:

En zapatas combinadas:

$$K_{(x)} = 803^2 * 0.29 * 29.70 * \sqrt{\frac{10.61}{\pi}} = 10206299 \frac{T}{m}$$

En cimentaciones de muro:

$$K_{(x)} = 803^2 * 0.29 * 65.72 * \sqrt{\frac{97.16}{\pi}} = 68343223 \frac{T}{m}$$

Luego calculamos por la fórmula:

En zapatas combinadas:

$$k_{\varphi 1} = 5.93 + 1.24 \cdot tg(35) \cdot \sqrt{\frac{10.61}{1}} = 8.76$$

$$k_{\varphi 2} = 7.62 + 1.48 \cdot tg(35) \cdot \sqrt{\frac{10.61}{1}} = 11.00$$

En cimentación de muro:

$$k_{\varphi 1} = 5.93 + 1.24 \cdot tg(35) \cdot \sqrt{\frac{97.16}{1}} = 14.49$$

$$k_{\varphi 2} = 7.62 + 1.48 \cdot tg(35) \cdot \sqrt{\frac{97.16}{1}} = 17.83$$

Luego el coeficiente equivalente k_{ϕ} será:

En zapatas combinadas:

$$k_{\varphi} = \frac{8.76 * 11.00}{8.76 + 11.00} = 4.88$$

En cimentación de muro:

$$k_{\varphi} = \frac{14.49 * 17.83}{14.49 + 17.83} = 8.00$$

En consecuencia, el coeficiente de rigidez de compresión elástica no uniforme lo calculamos por la siguiente fórmula:

$$K_{\omega} = (C_2)^2 \cdot \rho \cdot k_{\omega} \cdot a^3$$

En zapatas combinadas:

$$K_{\varphi} = (803)^2 \cdot 0.29.4.88 \cdot \sqrt{\frac{10.61}{\pi}}^3 = 5663660 \text{ T/m}$$

En zapatas combinadas:

$$K_{\varphi} = (803)^2 \cdot 0.29.8.00 \cdot \sqrt{\frac{97.16}{\pi}}^3 = 257291551 \text{ T/m}$$

En forma análoga calculamos las masas M_z, M_x, M_{φ} por la tabla N° 2.2 y tabla N° 2.3, cuando $\mu=0.28$

$$m_{oz} = 2.90$$
 $m_{ox} = 1.83$ $m_{o\phi} = 1.01$ $m_{1z} = 0.59$ $m_{1x} = 0.29$ $m_{1\phi} = 0.13$

Luego:

En zapatas combinadas:

$$m_z = 2.90 + 0.59. \, tg(35). \, \sqrt{\frac{10.61}{1}} = 4.25$$
 $m_x = 1.83 + 0.29. \, tg(35). \, \sqrt{\frac{10.61}{1}} = 2.49$
 $m_{\phi} = 1.01 + 0.13. \, tg(35). \, \sqrt{\frac{10.61}{1}} = 1.31$

En cimentación de muros:

$$m_z = 2.90 + 0.59. \, tg(35). \sqrt{\frac{97.16}{1}} = 6.97$$
 $m_x = 1.83 + 0.29. \, tg(35). \sqrt{\frac{97.16}{1}} = 3.83$
 $m_{\phi} = 1.01 + 0.13. \, tg(35). \sqrt{\frac{97.16}{1}} = 1.91$

Entonces calculamos por las fórmulas:

$$M_{x(z)} = \rho. a^3. m_{x(z)}$$
$$M_{\omega} = \rho. a^5. m_{\omega}$$

En zapatas combinadas:

$$M_z = 0.29 * \sqrt{\frac{10.61}{\pi}} * 4.25 = 7.65 \frac{T.s^2}{m}$$

$$M_x = 0.29 * \sqrt{\frac{10.61}{\pi}} * 2.49 = 4.48 \frac{T.s^2}{m}$$

$$M_{\varphi} = 0.29 * \sqrt{\frac{10.61}{\pi}} * 1.31 = 7.96 \frac{T.s^2}{m}$$

En cimentación de muros:

$$M_z = 0.29 * \sqrt{\frac{97.16}{\pi}} * 6.97 = 347.65 \frac{T.s^2}{m}$$

$$M_x = 0.29 * \sqrt{\frac{97.16}{\pi}} * 3.83 = 191.03 \frac{T.s^2}{m}$$

$$M_{\varphi} = 0.29 * \sqrt{\frac{97.16}{\pi}} * 1.91 = 2947.29 \frac{T.s^2}{m}$$

1.3. MODELO DINÁMICO A.E. SARGIÁN

$$K_x = \frac{28,8. (1 - \mu^2). \rho. C_2^2. \sqrt{A}}{\pi. (7 - 8\mu)}$$

En zapatas combinadas:

$$K_x = \frac{28,8. (1 - 0.28^2). 0.29. 803^2. \sqrt{10.61}}{\pi. (7 - 8 * 0.28)}$$
$$= 1081098 \text{ T/m}$$

En cimentación de muro:

$$K_x = \frac{28,8. (1 - 0.28^2). 0.29. 803^2. \sqrt{97.16}}{\pi. (7 - 8 * 0.28)}$$
$$= 3271530 \text{ T/m}$$

$$K_{\varphi} = \frac{8,52. \rho. C_2^2. I}{\sqrt{\pi}. (1 - \mu). \sqrt{A}}$$

En zapatas combinadas:

$$K_{\varphi X} = \frac{8,52.0.29.803^{2}.\left(\frac{1.40*7.58^{3}}{12}\right)}{\sqrt{\pi}.\left(1-0.28\right).\sqrt{10.61}}$$

$$= 19474125 \text{ T/m}$$

$$K_{\varphi Y} = \frac{8,52.0.29.803^{2}.\left(\frac{7.58*1.40^{3}}{12}\right)}{\sqrt{\pi}.\left(1-0.28\right).\sqrt{10.61}}$$

$$= 664317 \text{ T/m}$$

En cimentación de muro:

$$K_{\varphi X} = \frac{8,52.0.29.803^{2}.\left(\frac{34.70 * 2.80^{3}}{12}\right)}{\sqrt{\pi}.\left(1 - 0.28\right).\sqrt{97.16}}$$

$$= 8039700 \text{ T/m}$$

$$K_{\varphi Y} = \frac{8,52.0.29.803^{2}.\left(\frac{2.80 * 34.70^{3}}{12}\right)}{\sqrt{\pi}.\left(1 - 0.28\right).\sqrt{97.16}}$$

$$= 1234760440 \text{ T/m}$$

$$K_{Z} = \frac{\rho. C_{1}^{2}.\sqrt{A}}{\Phi. (1 - \mu^{2})}$$

En zapatas combinadas:

$$K_x = \frac{0.29.1452^2.\sqrt{10.61}}{0.833.(1 - 0.28^2)} = 2594188 \text{ T/m}$$

En cimentación de muro:

$$K_x = \frac{0.29.1452^2.\sqrt{97.16}}{0.833.(1 - 0.28^2)} = 7850322 \text{ T/m}$$

1.4. MODELO DINÁMICO NORMA RUSA SNIP 2.02.05-87

El coeficiente de compresión elástica uniforme lo calculamos por la fórmula:

$$C_{z} = b_{0}E\left(1 + \sqrt{\frac{A_{10}}{A}}\right)$$

En zapatas combinadas

$$C_z = 1.5 * 480000 * \left(1 + \sqrt{\frac{10}{10.61}}\right) = 1418996 \text{ T/m}^3$$

En cimentación de muro

$$C_z = 1.5 * 480000 * \left(1 + \sqrt{\frac{10}{97.16}}\right) = 950987 \text{ T/m}^3$$

Luego determinamos los coeficientes de desplazamiento uniforme, compresión elástica no uniforme y desplazamiento elástico no uniforme:

En zapatas combinadas

$$\begin{split} &C_x = 0.7C_z = 0.7*1418996 = 993297.2 \text{ T/m}^3 \\ &C_\phi = 2C_z = 2*1418996 = 2837992 \text{ T/m}^3 \\ &C_\psi = C_z = 1418996 \text{ T/m}^3 \end{split}$$

En cimentación de muros

$$C_x = 0.7C_z = 0.7 * 950987 = 665691 \text{ T/m}^3$$

$$C_{\phi} = 2C_z = 2 * 950987 = 1901974 \text{ T/m}^3$$

$$C_{\psi} = C_z = 950987 \text{ T/m}^3$$

A través de las fórmulas calculamos los coeficientes de rigidez:

En zapatas combinadas

$$\begin{split} K_z &= C_z A = 1418996*10.61 = 15055548 \text{ T/m} \\ K_x &= C_x A = 993297.2*10.61 = 10538881 \text{ T/m} \\ K_\phi &= C_\phi I_\phi \\ K_{\phi X} &= 2837992*\left(\frac{1.4*7.58^3}{12}\right) = 144200104 \text{ T/m} \\ K_{\phi Y} &= 2837992*\left(\frac{7.58*1.4^3}{12}\right) = 4919072 \text{ T/m} \\ K_\psi &= C_\psi I_\psi \\ K_\psi &= 1418996*\left(\frac{1.4*7.58^3}{12} + \frac{7.58*1.4^3}{12}\right) \\ &= 74559588 \text{ T/m} \end{split}$$

En cimentación de muro:

$$\begin{split} &K_z = C_z A = 950987*97.16 = 92397897 \text{ T/m} \\ &K_x = C_x A = 665691*97.16 = 64678537 \text{ T/m} \\ &K_\phi = C_\phi I_\phi \\ &K_{\phi X} = 1901974*\left(\frac{34.70*2.80^3}{12}\right) = 120733251 \text{ T/m} \\ &K_{\phi Y} = 1901974*\left(\frac{2.80*34.70^3}{12}\right) = 18542563950 \text{ T/m} \\ &K_\psi = C_\psi I_\psi \end{split}$$

$$K_{\psi} = 950987 * \left(\frac{34.70 * 2.80^3}{12} + \frac{2.80 * 34.70^3}{12} \right)$$

= 9331648601 T/m

Como ahora existe vibración rotacional alrededor del eje vertical, entonces calculamos el momento de inercia de la masa de la zapata respecto a este eje:

$$M_{\psi} = \frac{M_{x}(a^2 + b^2)}{12}$$

En zapatas combinadas

$$M_{\psi} = \frac{4.48 * (1.40^2 + 7.58^2)}{12} = 22.18 \frac{T. s^2}{m}$$

En cimentación de muro:

$$M_{\psi} = \frac{191.03 * (34.70^2 + 2.80^2)}{12} = 19292 \frac{T.s^2}{m}$$

Tabla Nº 4.2 Coeficientes de rigidez para zapatas combinadas

Modelo dinámico	K _x (T/m)	K _y (T/m)	K _z (T/m)	K _{φx} (T/m)	Κ _{φy} (T/m)	Κ _{φz} (T/m)
Barkan	132091	132091	157877	1558412	30847	-
llichev	10206299	10206299	3477702	5663660	5663660	_
Sargsian	1081098	1081098	2594188	19474125	664317	-
Norma Rusa	10538881	10538881	15055548	144200104	4919072	74559588

Tabla N° 4.3 Coeficientes de Rigidez para cimiento de muro

Modelo Dinámico	K _x (T/m)	K _y (T/m)	K _z (T/m)	Κ _{φx} (T/m)	Κ _{φγ} (T/m)	Κ _{φz} (T/m)
Barkan	795935	795935	951390	662011	172422854	_
llichev	68343223	68343223	19061645	257291551	257291551	_
Sargsian	3271530	3271530	7850322	8039700	1234760440	-
Norma Rusa	64678537	64678537	92397897	120733251	1854256395	933164860

Tabla N° 4.4 Características de las masas de las zapatas

	M _x (T.s ² /m)	Μ _γ (T.s²/m)	M _z (T.s ² /m)	M _{φx} (T.s²/m)	Μ _{φγ} (T.s²/m)	M _{ψz} (T.s²/m)
Zapatas combinadas	4.48	4.48	7.65	7.96	7.96	22.18
Cimentación de muro	191.03	191.03	347.65	2947.29	2947.29	19292

C. MODELACIÓN DE LA EDIFICACIÓN POR EL PROGRAMA ETAPS

Como el programa informático de soporte se utilizó el ETAPS V9.7.3, analizando la estructura por el método espectral para sismos, respecto al eje más largo de la edificación y a través de los acelerogramas reales proporcionados por el CISMID – UNI, correspondiente al sismo de Lima (17-10-1966). Cuya aceleración máxima es de 2.693m/s² como muestra la tabla N°06 del Anexo, se eligió el tramo más importante donde aparece la aceleración máxima como se muestra en la Figura N° 4.7

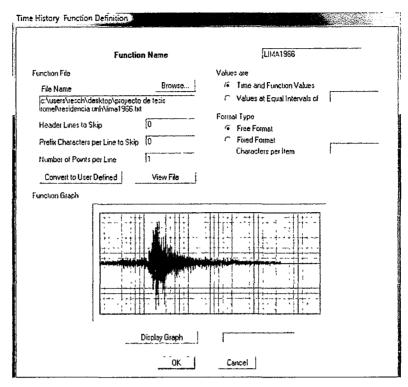


Figura. 4.7 Acelerograma Lima (1966)

Para modelar la edificación se tomó en cuenta las características de los planos del expediente técnico, como las características de los materiales que se usaron en la construcción que se muestra en la imagen 4.8

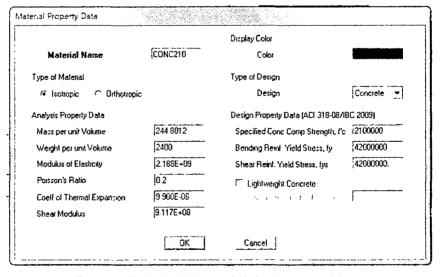


Figura. 4.8 Definición de las propiedades de los materiales a usar

Las zapata se modelaron utilizando elementos SHELL y SLAB, y ubicadas a un nivel de -1.20 m; de acuerdo a los planos de cimentación de la estructura con respecto al modelo de interacción suelo - estructura de la figura 2.3, al nudo ubicado en el centroide de la zapata se asignaron las propiedades de las masas de la Tabla N° 4.4, utilizando los elementos MASS. Para los modelos dinámicos Barkan, Ilichev y Sargian no se utilizó M_{ψ^2} debido a su restricción de rotación alrededor del eje vertical, pero para el modelo dinámico de la Norma Rusa se utilizaron todas sus propiedades.

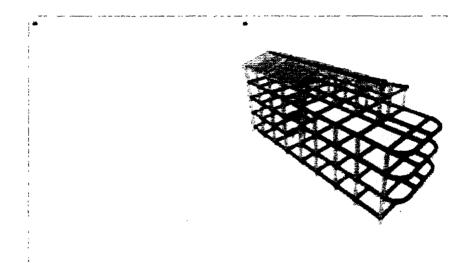


Figura. 4.9 modelado de la estructura en el ETAPS considerando las zapatas

De acuerdo a la figura 4.10 se asignaron las propiedades de los resortes traslacionales y rotacionales de la las tablas (4.2 – 4.3), a través del elemento SPRING, Para los modelos dinámicos Barkan, llichev y Sargian se restringió la rotación alrededor del eje vertical, debido a la inexistencia del coeficiente de rigidez $M_{\psi z}$ y para el modelo dinámico de la Norma Rusa se asignó todas sus propiedades.

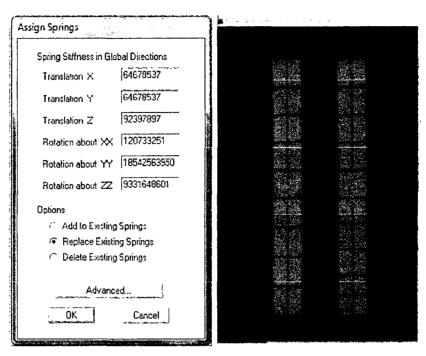


Figura. 4.10 Asignación de valores de restricción de la fundación

Como se puede apreciar en la figura 4.10, los coeficientes de rigidez K_z , K_x , K_y , $K_{\phi z}$, $K_{\phi x}$, $K_{\phi y}$, se aplicaron en el centroide en planta de la zapata.

Se incluyó en el análisis el elemento de FRAME OFFSET ALONG LENGTH (brazo rígido) en los extremos de las vigas para tomar en cuenta la gran rigidez existente entre el eje de las columnas y las caras de las columnas. Se consideró un factor de rigidez igual a 1.

En cada nivel se modeló un diafragma rígido en el plano horizontal haciendo uso de ASSIGN DIAPHRAGM, para tomar en cuenta el hecho que el movimiento de los nudos de un piso es dependiente del movimiento del centro de masas de dicho piso.

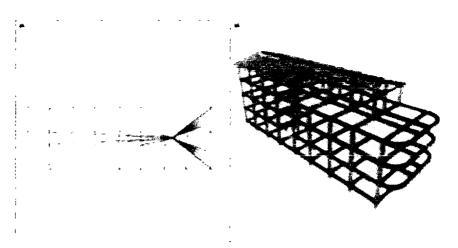


Figura. 4.11 Asignación de diafragma rígido al Story 2

Los centros de masa se ubicarán en el centroide del área en planta de cada nivel, sin embargo, la Norma de Diseño Sismorresistente E.030, señala que para tomar en cuenta que podría presentarse una excentricidad accidental, el centro de masas de cada nivel debe desplazarse una distancia del 5% de la dimensión perpendicular a la dirección de análisis. Es, por ello, que asignamos la excentricidad correspondiente para los diferentes casos como lo muestra la figura 4.12

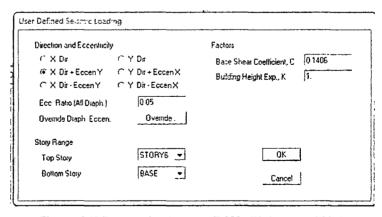


Figura. 4.12 De acuerdo a la norma E.030, 5% de excentricidad

De acuerdo a los datos de entrada y la modelación de la edificación, en las figuras 4.13 y 4.14 se muestran los modelos espaciales de cálculo para el

edificio sin considerar la flexibilidad de la base de fundación y considerando la flexibilidad de la misma.

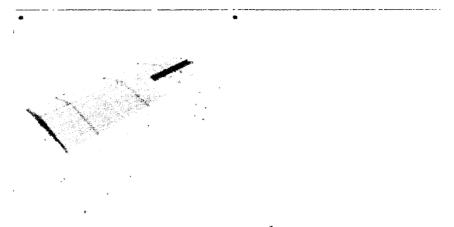


Figura. 4.13 Modelo espacial de cálculo sin considerar la flexibilidad de fundación

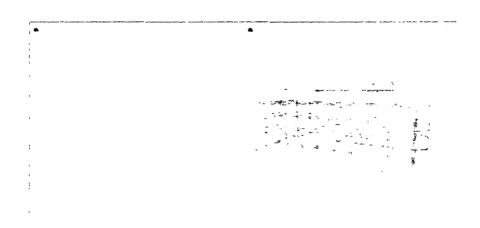


Figura. 4.14 Modelo espacial de cálculo considerando la flexibilidad de fundación

Se llevó a cabo un análisis espectral en base a las indicaciones de la Norma de Diseño Sismorresistente E.030. Los factores que se incluyeron en el análisis fueron:

Z = 0.30 Zona sísmica 2 (departamento de Huancavelica - provincia de Huancavelica)

U = 1.50 categoría de la edificación: Edificación esencial

S = 1.00 correspondiente al estrato de apoyo: Suelo muy rígido (perfil Tipo S1)

Tp = 0.40s periodo correspondiente al perfil de suelo S1

R = 8 coeficiente de reducción de fuerzas (pórticos de concreto armado)

 $C = 2.5 \left(\frac{T_p}{T}\right)$, siendo $C \le 2.5$ Factor de amplificación sísmica

El factor de escala necesario para el ETAPS se calculó con la fórmula para la aceleración espectral de la Norma E.030, para cada una de las direcciones horizontales analizadas, definido por:

$$S_a = \frac{ZUCS}{R}g$$

Los datos se tabularon con periodos de o a 10 segundos, como lo muestra la tabla N° 06 del Anexo; dichos datos se cargaron en el programa como muestra la Figura N° 4.15

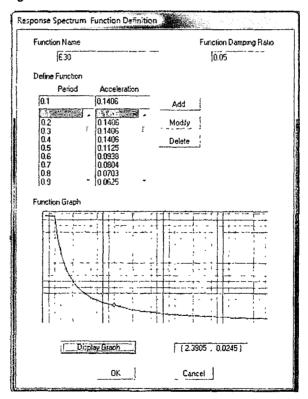


Figura. 4.15 Factor de amplificación sísmica adimencional

El cálculo se realiza de forma adimensional pues el programa permite poner los datos para los casos de de sismos en las diferentes direcciones considerados como EQXX y EQYY, considerando como factor de escala la aceleración de la gravedad, como muestra la Figura 4.16

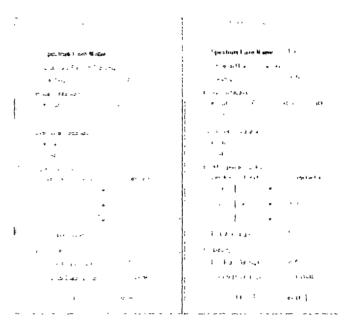


Figura. 4.16 Casos de dirección del espectro de diseño

En todos los casos se consideraron 12 modos o formas de vibración, siendo el tipo de análisis modal RITZ VECTORS, para considerar en el análisis la aceleración en la dirección X e Y, como muestra la figura N° 4.17.

Figura. 4.17 Análisis modal en las direcciones horizontales

Se utilizó las combinaciones de carga de acuerdo a la norma como se muestra:

COMBO 1 = 1.4 CM + 1.7 CV

COMBO 2 = 1.25 CM + SX

COMBO 3 = 1.25 CM - SX

COMBO 4 = 1.25 CM + SY

COMBO 5 = 1.25 CM - SY

COMBO 6 = 0.9 CM + SX

COMBO 7 = 0.9 CM - SX

COMBO 8 = 0.9 CM + SY

COMBO 9 = 0.9 CM - SY

ENVOLVE = COMBO 1 + COMBO 2 + ... + COMBO 9

Para el análisis común se consideró a la zapata empotrada en el terreno.

Para el análisis que incluyen la rigidez del suelo (modelos dinámicos) se asignaron los coeficientes de rigidez según las tablas N° 4.2 - 4.3 y el modelo dinámico de la figura N° 2.3

4.1.4. RESULTADOS DE LA INVESTIGACIÓN NUMÉRICA

En las tablas 4.5 – 4.10 Se dan los resultados del análisis espectral, calculándose los periodos de las 12 primeras formas de vibración y sus frecuencias angulares, así como los desplazamientos laterales máximos de los centros de masas en los ejes OX y OY.

También se dan los resultados de las fuerzas axiales máximas, fuerzas cortantes máximas, momentos flectores máximos de toda la edificación, bajo la acción sísmica con un ángulo de 0°.

Estos cálculos se realizaron para el edificio sin considerar la flexibilidad de la base de fundación (análisis común) y considerando la flexibilidad de la fundación para los modelos dinámicos D.D. Barkan – O.A. Savinov, V.A. Ilichev, A.E. Sargían y Norma Rusa SNIP 2.02.05.87.

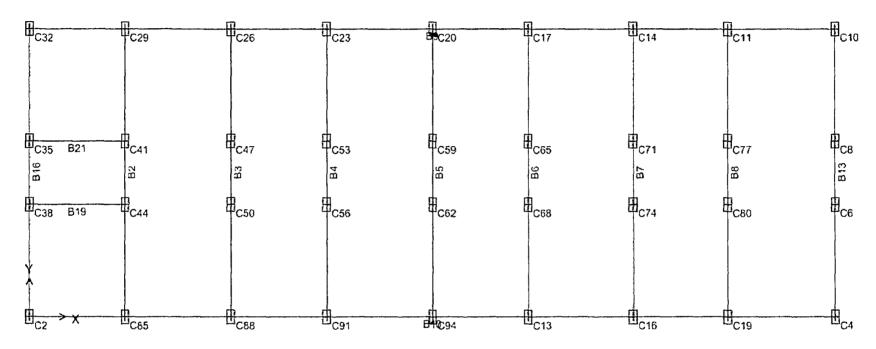


Figura. 4.18 Distribución de los elementos verticales del 1er al 5to piso.

En las tablas N° 4.11 – 4.16, se dan los resultados obtenidos para los mismos parámetros de la edificación bajo la acción del acelerograma de Lima. Los análisis se ejecutaron para el modelo común, modelo de Barkan, modelo de llichev, modelo de Sargian y modelo de la Norma Rusa.

En las tablas N° 4.9 - 4.10, entre paréntesis se indican los elementos donde surgen los valores máximos de desplazamientos laterales, fuerzas normales y cortantes momentos flectores.

Según la Norma Peruana E.030 – 2003 en el Capitulo 4, articulo 16 (16.4), los desplazamientos elásticos (obtenidos por los programas informáticos) deben multiplicarse por el factor 0.75R (estructuras regulares) y 0.75(3/4R) (estructuras irregulares), para obtener los desplazamientos laterales.

En las tablas 4.7 – 4.8. Se dan solo los desplazamientos elásticos.

Tabla 4.5 Periodos según la Norma E.030

Modo de		Periodo de v	ibración poi	la forma (S	
vibración	Común	Barkan	Ilichev	Sargian	Rusa
1	0.484742	0.891228	0.883008	0.880786	0.878066
2	0.39893	0.724189	0.720853	0.720065	0.698781
3	0.365307	0.672055	0.652249	0.653187	0.648639
4	0.178282	0.289235	0.288272	0.288318	0.286473
5	0.140838	0.199621	0.198601	0.198651	0.193698
6	0.128471	0.163437	0.163358	0.163361	0.159565
7	0.111716	0.147627	0.147595	0.147594	0.146956
8	0.088348	0.142981	0.142712	0.142725	0.124376
9	0.079486	0.122306	0.122255	0.122254	0.122074
10	0.072365	0.121478	0.121233	0.121246	0.103122
11	0.057842	0.102488	0.102472	0.10247	0.098715
12	0.048777	0.098529	0.098523	0.098521	0.087894

Tabla 4.6 Frecuencias según la Norma E.030

Modo de		Frecuen	cia angular (rad/seg)	
vibración	Común	Barkan	llichev	Sargian	Rusa
1	2.062953	1.122047	1.132493	1.135350	1.138867
2	2.506705	1.380855	1.387245	1.388764	1.431064
3	2.737424	1.487973	1.533157	1.530955	1.541690
4	5.609091	3.457396	3.468946	3.468393	3.490730
5	7.100356	5.009493	5.035221	5.033954	5.162676
6	7.783858	6.118566	6.121525	6.121412	6.267039
7	8.951269	6.773829	6.775297	6.775343	6.804758
8	11.318875	6.993936	7.007119	7.006481	8.040136
9	12.580832	8.176214	8.179625	8.179691	8.191753
10	13.818835	8.231943	8.248579	8.247695	9.697252
11	17.288476	9.757240	9.758763	9.758954	10.130173
12	20.501466	10.149296	10.149914	10.150120	11.377341

Tabla 4.7 Desplazamientos elásticos en X-X, según la Norma E.030

	DESPLAZAMIENTOS ELASTICOS MÁXIMOS EN X - X							
Pisos	Común	Barkan	llichev	Sargian	Rusa			
4	0.0166	0.0232	0.0225	0.0225	0.0225			
3	0.0141	0.0202	0.0195	0.0195	0.0195			
2	0.0107	0.0161	0.0154	0.0154	0.0154			
1	0.0061	0.0107	0.0100	0.0100	0.0100			

Tabla 4.8 Desplazamientos elásticos en Y-Y, según la Norma E.030

	D	DESPLAZAMIENTOS MÁXIMOS EN Y - Y							
Pisos	Común	Barkan	Ilichev	Sargian	Rusa				
4	0.0099	0.0034	0.0033	0.0032	0.0032				
3	0.0079	0.0041	0.0040	0.0039	0.0039				
2	0.0057	0.0034	0.0034	0.0033	0.0033				
1	0.0030	0.0033	0.0034	0.0033	0.0033				

Tabla 4.9 Fuerzas internas en X-X, según la Norma E.030

Modelo	FUERZAS INTERNAS EN DIRECCIÓN X - X							
dinámico	N _{máx} .	(T)	V _m	_{áx} (T)	M _{má}	, (T.m)		
Común	35.90	(C4)	7.85	(C20)	8.80	(C29)		
Barkan	27.57	(C4)	6.28	(C20)	8.40	(C29)		
Ilichev	27.54	(C4)	6.21	(C20)	8.66	(C29)		
Sargian	27.54	(C4)	6.21	(C20)	8.32	(C29)		
N. Rusa	27.55	(C4)	6.91	(C20)	8.30	(C29)		

Tabla 4.10 Fuerzas Internas en Y-Y, según la Norma E.030

Modelo	FUERZAS INTERNAS EN DIRECCION Y- Y								
dinamico	Nmáx.	(T)	Vmá	x (T)	Mmáx	(T.m)			
Común	74	(C8)	6.36	(C38)	12.99	(C38)			
Barkan	127.03	(C8)	11.69	(C38)	23.42	(C38)			
Ilichev	127.15	(C8)	9.03	(C38)	23.65	(C38)			
Sargian	127.13	(C8)	9.18	(C38)	23.62	(C38)			
N. Rusa	127.16	(C8)	9.04	(C38)	23.64	(C38)			

Tabla 4.11 Periodos de vibración bajo el sismo de 1966

	ACELER	OGRAMA DE	LIMA (17-10	-1966)				
Modo de	Periodo de vibración por la forma (S)							
vibración	Común	Barkan	llichev	Sargian	Rusa			
1	0.484742	0.891228	0.883008	0.880786	0.878066			
2	0.39893	0.724189	0.720853	0.720065	0.698781			
3	0.365307	0.672055	0.652249	0.653187	0.648639			
4	0.178282	0.289235	0.288272	0.288318	0.286473			
5	0.140838	0.199621	0.198601	0.198651	0.193698			
6	0.128471	0.163437	0.163358	0.163361	0.159565			
7	0.111716	0.147627	0.147595	0.147594	0.146956			
8	0.088348	0.142981	0.142712	0.142725	0.124376			
9	0.079486	0.122306	0.122255	0.122254	0.122074			
10	0.072365	0.121478	0.121233	0.121246	0.103122			
11	0.057842	0.102488	0.102472	0.102470	0.098715			
12	0.048777	0.098529	0.098523	0.098521	0.087894			

Tabla 4.12 Frecuencias angular bajo el sismo de 1966

	ACELEI	ROGRAMA DE	LIMA (17-10	·1966)				
Modo de	Frecuencia angular (rad/seg)							
vibración	Común	Barkan	llichev	Sargian	Rusa			
1	2.062953	1.122047	1.132493	1.135350	1.138867			
2	2.506705	1.380855	1.387245	1.388764	1.431064			
3	2.737424	1.487973	1.533157	1.530955	1.541690			
4	5.609091	3.457396	3.468946	3.468393	3.490730			
5	7.100356	5.009493	5.035221	5.033954	5.162676			
6	7.783858	6.118566	6.121525	6.121412	6.267039			
7	8.951269	6.773829	6.775297	6.775343	6.804758			
8	11.318875	6.993936	7.007119	7.006481	8.040136			
9	12.580832	8.176214	8.179625	8.179691	8.191753			
10	13.818835	8.231943	8.248579	8.247695	9.697252			
11	17.288476	9.757240	9.758763	9.758954	10.130173			
12	20.501466	10.149296	10.149914	10.150120	11.377341			

Tabla 4.13 Desplazamientos elásticos en X-X, bajo el sismo de 1966

	ACELEROGRAMA DE LIMA (17-10.1966)										
Pisos	DESPLAZAMIENTOS ELÁSTICOS MÁXIMOS EN X - X										
PISOS	Común										
4	0.0554	0.0526	0.0292	0.0299	0.0308						
3	0.0458	0.0440	0.0247	0.0253	0.0268						
2	0.0340	0.0385	0.0200	0.0201	0.0220						
1	0.0165	0.0282	0.0137	0.0139	0.0149						

Tabla 4.14 Desplazamientos elásticos en Y-Y, bajo el sismo de 1966

	ACELEROGRAMA DE LIMA (17-10.1966)								
Pisos	DESPLAZAMIENTOS ELÁSTICOS MÁXIMOS EN Y - Y								
	Común	Barkan	llichev	Sargian	Rusa				
4	0.0605	0.1031	0.1041	0.1023	0.0925				
3	0.0489	0.0705	0.0790	0.0753	0.0714				
2	0.0343	0.0595	0.0602	0.0563	0.0545				
1	0.0152	0.0361	0.0352	0.0344	0.0328				

Tabla 4.15 Fuerzas internas en X-X, bajo el sismo de 1966

ACELEROGRAMA DE LIMA (17-10.1966)								
	FUERZAS INTERNAS EN DIRECCIÓN X - X							
Modelo dinámico	N _{máx} . (T)		V _{máx} (T)		M _{máx} (T.m)			
Común	62.00	(C20)	19.27	(C20)	5.26	(C29)		
Barkan	38.30	(C4)	18.15	(C32)	21.64	(C4)		
Ilichev	33.90	(C4)	9.81	(C32)	19.79	(C4)		
Sargian	33.30	(C4)	9.63	(C32)	19.90	(C4)		
N. Rusa	27.80	(C4)	10.78	(C17)	22.26	(C4)		

Tabla 4.16 Fuerzas internas en Y-Y, bajo el sismo de 1966

ACELEROGRAMA DE LIMA (17-10.1966)							
Madala dinémia	FUERZAS INTERNAS EN DIRECCION Y- Y						
Modelo dinámico	N _{máx} . (T)		V _{máx} (T)		M _{máx} (T.m)		
Común	56.89	(C8)	5.25	(C10)	57.86	(C38)	
Barkan	32.29	(C8)	11.36	(C38)	27.50	(C6)	
Ilichev	29.67	(C8)	11.73	(C38)	27.44	(C6)	
Sargian	28.47	(C8)	12.09	(C38)	27.28	(C6)	
N. Rusa	28.52	(C8)	7.80	(C38)	26.75	(C6)	

Como se esperaba, los desplazamientos máximos de los centros de masa en los eje OX y OY, tanto sin considerar la flexibilidad de la base de fundación, como considerando la flexibilidad de la misma, suceden en el piso 4 (D4).

Las fuerzas axiales máximas sin considerar la flexibilidad de la base de fundación y considerando la flexibilidad de la misma, surgen en el primer piso en las columnas 4 y 8.

Las fuerzas cortantes máximas sin considerar la flexibilidad de la base de fundación y considerando dicha flexibilidad, también surgen en el primer piso en las columnas 20 y 38.

Los momentos flectores sin considerar la flexibilidad de la base de fundación y considerando la flexibilidad de la misma, surgen en el primer piso en las columnas 29 y 38.

4.2. DISCUSIÓN DE RESULTADOS:

Tal como se esperaba, la flexibilidad de la base de fundación incrementa los periodos de las formas de vibración. El incremento más notorio se da para la primera forma de vibración por el modelo de Barkan.

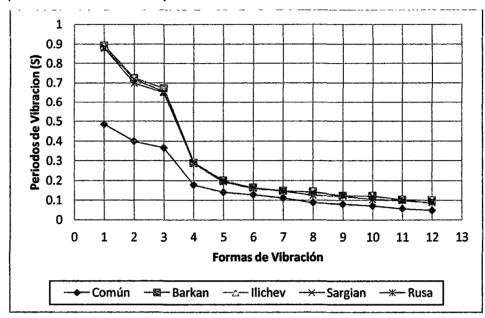


Figura. 4.19 Periodos de las primeras 12 formas de vibración libre.

En la figura N° 4.19 se muestra el gráfico de los periodos de vibración libre sin la flexibilidad de la base de fundación y considerando la flexibilidad de base de fundación para los modelos dinámicos de Barkan, Ilichev, Sargian y Norma Rusa, obtenidos por el programa ETAPS.

La flexibilidad de la base de fundación, disminuye las frecuencias de las formas de vibración libre, tal como se muestra en la figura 4.20. La disminución es más notoria en el modelo dinámico de Barkan, llichev y Sargian. Calculados por el programa ETAPS.

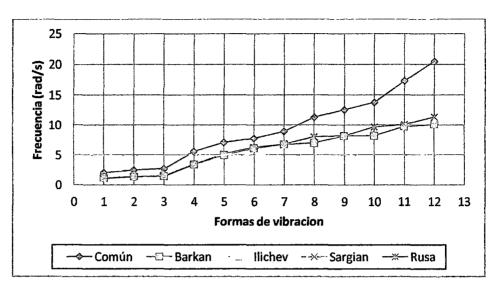


Figura. 4.20 Frecuencia Angular de las primeras 12 formas de vibración libre.

En las figuras N° 4.21 – 4.22, se muestran los desplazamientos máximos de los centros de masa para cada piso, calculados por el software ETAPS, y comparados con el desplazamientos máximos según la Norma Peruana E.030. Cabe indicar que para calcular los desplazamientos se multiplico el desplazamiento elástico por el factor 0.75R, lo que dio por resultado que el desplazamiento máximo se da en el último piso de la estructura.

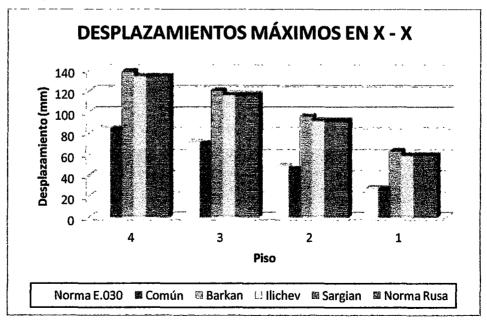


Figura. 4.21 Desplazamientos máximos en el eje OX.

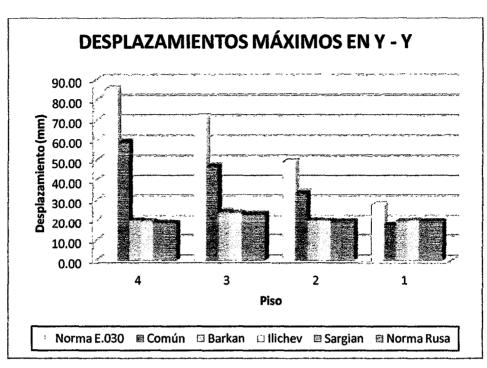


Figura. 4.22 Desplazamientos máximos en el eje OY.

Como era de esperarse, al considerar la flexibilidad de la base de fundación, se incrementa los desplazamientos de los centros de masa en los ejes OX y en los desplazamientos en el eje OY, se muestra una reducción de desplazamientos, producto de la sobre rigidez de la fundación, mostrando una gran diferencia entre lo esperado por la Norma Peruana E.030, siendo el más notorio el modelo dinámico de Barkan y Sargian.

En las figuras N° 4.23, se muestra las fuerzas axiales calculadas por el programa ETAPS, sin considerar la base de fundación y considerando la flexibilidad de la misma, siendo notorio la reducción de las fuerzas internas de los elementos verticales para los momentos dinámicos

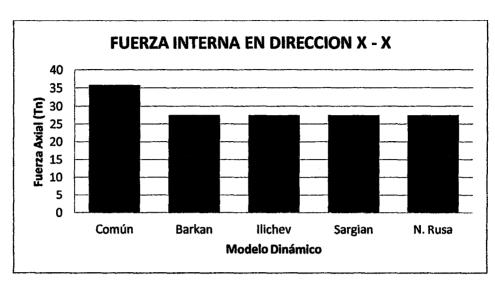


Figura. 4.23 Fuerza Axiał máxima en la dirección X-X, por la Norma Peruana E.030

En las figuras N° 4.24 - 4.25, se muestran los cálculos por el programa ETAPS, de la fuerza cortante y el momento flector máximos, siendo notorio que al considerar la flexibilidad de la base de fundación disminuyen los valores de dichas fuerzas internas, siendo el más notorio el modelo de Sargian y en momentos flectores el modelo de la Norma Rusa.

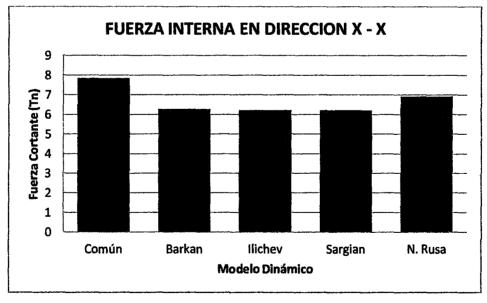


Figura. 4.24 Fuerza Cortante máxima en la dirección X-X, por la Norma Peruana E.030

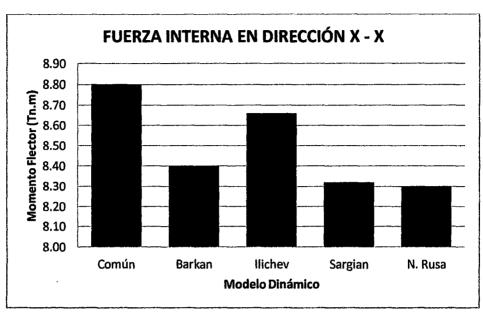


Figura. 4.25 Momento flector máximo en la dirección X-X, por la Norma Peruana E.030

En las figuras 4.26 – 4.27, se muestran los cálculos por el programa ETAPS de las fuerzas internas: fuerza axial, fuerza cortante y momento flector, sin considerar la flexibilidad de la fundación y considerando la flexibilidad de la misma, se puede observar que al aplicar los modelos dinámicos, las fuerzas en el eje OY aumentan considerablemente, en comparación al modelo de análisis empotrado.

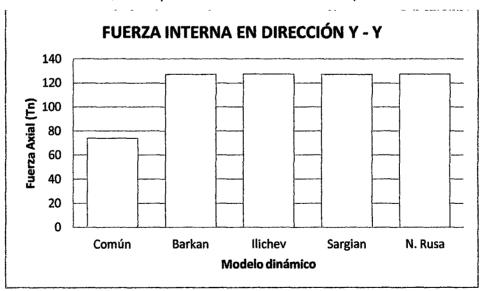


Figura. 4.26 Fuerza axial máxima en la dirección Y-Y, por la Norma Peruana E.030

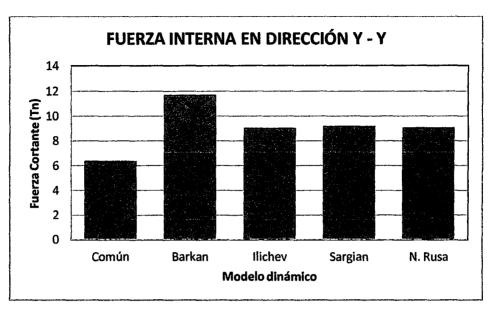


Figura. 4.27 Fuerza Cortante máxima en la dirección Y-Y, por la Norma Peruana E.030

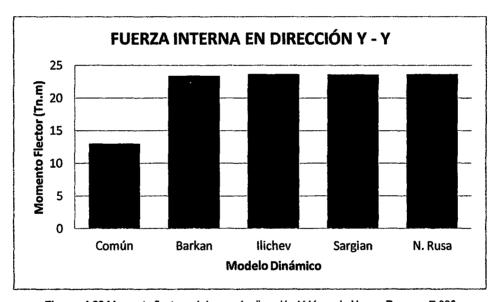


Figura. 4.28 Momento flector máxima en la dirección Y-Y, por la Norma Peruana E.030

Al aplicar la interacción suelo - estructura, con los modelos dinámicos, se observa una enorme variación a comparación del modelo común (empotrado), lo cual se refleja en la diferencia de desplazamientos máximos, producto a la diferencia de fuerza cortante, siendo el más notorio el modelo dinámico de Barkan.

En las figuras 4.29 - 4.30, se muestran los desplazamientos máximos, bajo la acción del acelerograma real del sismo de Lima (17-10-1966), el cual permite

obtener mayores valores de desplazamientos, tanto para el modelo común (empotrado), como para los modelos dinámicos Barkan, llichev, Sargian y Norma Rusa, siendo el más notorio en este análisis el desplazamiento del modelo común para los desplazamientos del eje OX, y para los desplazamientos en el eje OY es más notorio los desplazamientos producidos en el modelo dinámico llichev.

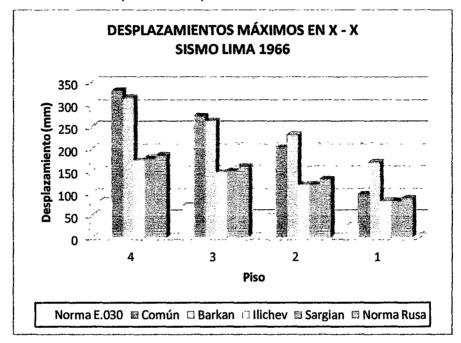


Figura. 4.28 Desplazamientos Máximos en X-X, bajo la aplicación del sismo Lima (17.10.1966)

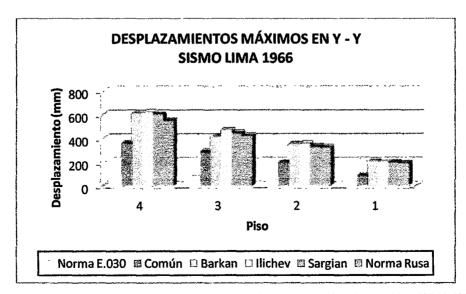


Figura. 4.28 Desplazamientos Máximos en Y-Y, bajo la aplicación del sismo Lima (17.10.1966)

En las figuras 4.29 – 4.34, se muestran las fuerzas internas calculadas bajos los efectos del acelerograma real del sismo de Lima (17.10,1966), cabe indicar que se puede apreciar un aumento en la distribución de fuerzas internas.

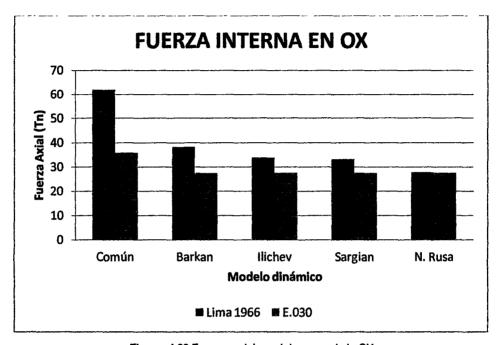


Figura. 4.29 Fuerzas axiales máximas en el eje OX

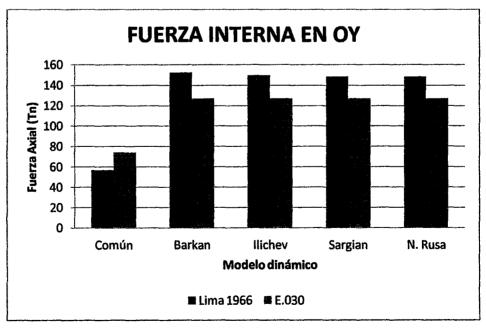


Figura. 4.30 Fuerzas axiales máximas en el eje OY

Se puede notar que bajo la acción del acelerograma real se obtiene mayores valores con respecto a la fuerza axial, tanto para el método común como para los modelos dinámicos Barkan e llichev.

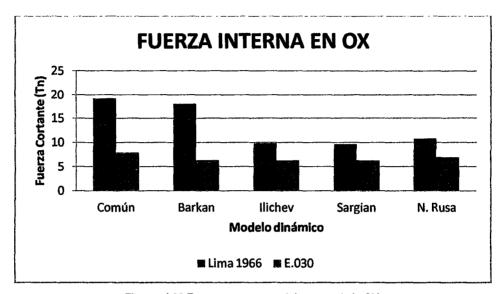


Figura. 4.30 Fuerzas cortantes máximas en el eje OY

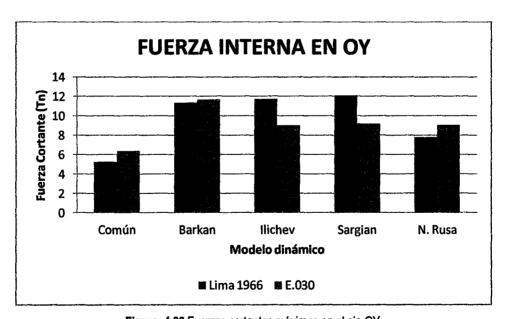


Figura. 4.30 Fuerzas cortantes máximas en el eje OY

8

Hay un incremento significativo de la distribución de las fuerzas cortantes, considerando la acción sísmica del acelerograma Lima (17.10.1966), siendo el más notorio el modelo común y el modelo dinámico Norma Rusa.

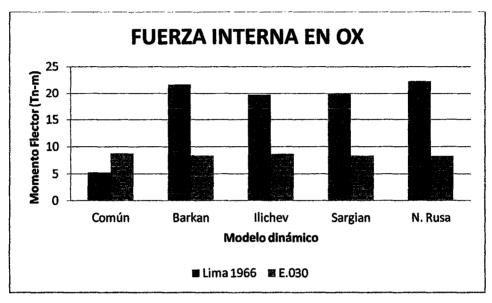


Figura. 4.31 Momentos Flectores máximos en el eje OX

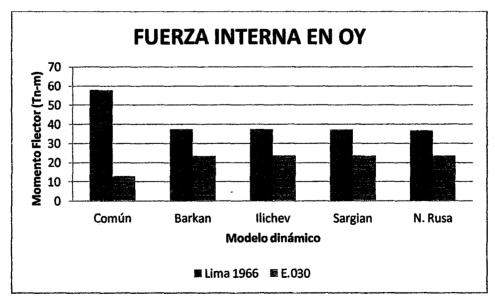


Figura. 4.32 Momentos Flectores máximos en el eje OY

Se muestran los resultados calculados por el programa ETAPS, para los cálculos de losmomentos flectores, bajo la acción de la Norma Peruana E.030 y el sismo

ocurrido en Lima el 17 – 10 – 1966, se puede notar que el sismo de Lima permite obtener mayores valores en los momentos flectores para el modelo empotrado y los modelos dinámicos.

Otra vez quedó demostrado que los resultados obtenidos por la Norma Peruana E.030 a través del análisis de respuesta espectral es solo referencial, ya que sus valores están por debajo de lo obtenidos por el acelerograma de Lima Se comprueba que el efecto de la flexibilidad de la base de fundación, influye directamente en la determinación de los parámetros de cálculo en las edificaciones.

CONCLUSIONES

Habiendo cumplido con los objetivos planteados en la investigación, es decir, realizar el análisis de interacción sísmica suelo estructura de la residencia universitaria se concluye que:

- 1. El lograr que el suelo de fundación interactúe en simultáneo con la estructura, permite obtener resultados que describen el verdadero comportamiento de este sistema frente a un evento sísmico.
- 2. Utilizando modelos dinámicos de interacción suelo estructura se puede observar que la flexibilidad de la base de fundación influye directamente en la determinación de los parámetros de cálculo. Una comparación entre un modelo empotrado y considerando la flexibilidad de la base de fundación permite que:
 - Le periodo de la primera forma de vibración libre, aumente hasta un 83,85% observado en el modelo dinámico de Barkan.
 - Para el caso de la frecuencia de la primera forma de vibración libre, disminuya en un 45.61% observado en el modelo dinámico de Barkan.
- 3. La comparación de los resultados obtenidos por los diferentes modelos dinámicos nos permite indicar que el mayor efecto de flexibilidad de la base de fundación se da en el modelo de la Norma Rusa y el menor efecto se da en el modelo de Barkan, para el caso de zapatas combinadas.
- 4. Del cálculo por la Norma Peruana E.030-2003, se concluye que la flexibilidad de la base de fundación permite el incremento de los desplazamientos del centro de masas en el eje OX del 58.07% hasta 62.99% y en el eje OY se muestra una reducción de desplazamientos en producto a la sobre rigidez de la cimentación hasta un 78%, así mismo se produce una reducción de fuerzas axiales de un 23.29%; disminuyen las fuerzas cortantes de hasta un 20.89% y disminuyen los momentos flectores hasta un 5.68% esto en la dirección X-X; las fuerzas axiales

aumentan hasta un 71.83%; aumentan las fuerzas cortantes en un 83.80% y se observa un aumento en el momento flector hasta un 82.06%.

- 5. Se demostró que el análisis espectral por la Norma Peruana de diseño sismorresistente E.030 2003 es solo referencial para el caso de edificaciones Aporticadas con zapatas combinadas sobre suelos rígidos, ya que sus valores están por debajo de los obtenidos con el acelerograma real de Lima.
- Se demostró que el trabajo de modelo dinámico adaptado al programa informático ETAPS, describe perfectamente el problema de interacción suelo – estructura para edificaciones con zapatas combinadas y completamente rígidas.
- 7. En base al programa ETAPS se elaboró una forma de modelación de la edificación con sus cimentaciones, considerando la flexibilidad de la base de fundación, para el cálculo sísmico por la Norma Peruana E.030 2003 y bajo la acción del acelerograma real de Lima (17.10.1966), pues es el de mayor registro en la historia del Perú.
- 8. Si el reforzamiento estructural se realiza sin considerar la interacción suelo estructura, entonces el nivel de reforzamiento de la edificación se incrementará, aumentando los gastos de la misma.
- 9. Es notorio que la flexibilidad de la base de fundación en el análisis sísmico, a pesar que el suelo es rígido, produce cambios significativos en los modos de vibración y distribución de fuerzas, debiendo de mejorarse la Norma Peruana E.030 2003, incluyendo la exigencia del análisis de interacción suelo estructura, el cual describe perfectamente el comportamiento real de la edificación ante sismos.

RECOMENDACIONES

- Se recomienda el uso y aplicación de los modelos dinámicos para el cálculo de estructuras pues muestran una mayor confiabilidad en el diseño estructural.
- Para el cálculo de los coeficientes de Rigidez del suelo se recomienda considerar la planta exacta de la cimentación ya que la geometría y el área de contacto son factores determinantes en el cálculo de dichos coeficientes de rigidez.
- Es importante contar con un adecuado Estudio de Mecánica de suelos y con parámetros de aceptable confiabilidad, siendo este otro factor determinante en el cálculo de coeficientes de rigidez del suelo
- 4. Se debe realizar un correcto ingreso de Coeficientes de rigidez del Suelo al programa informático de análisis a emplear, teniendo especial cuidado al asignar las restricciones y unidades de medida.
- 5. Se recomienda tomar en cuenta la presente tesis en un estudio de interacción suelo
 estructura para una población más grande.

BIBLIOGRAFÍA

- G. Lopez Rincon, C-Zea Constantino y R. Rivera Constantino. Una Solución Directa al Problema de Interacción Suelo Estructura. Departamento de Geotecnia. UNAM. D.F. México. 2011
- Hernández Sampieri, Fernández Callado y Baptista Lucio. Metodología de la Investigación 5ta Edición.
- Ing. Diego Curasma, Wladimir. Interacción Sísmica Suelo-Estructura en Edificaciones Aporticadas. Tesis. Universidad Nacional de Huancavelica. Huancavelica 2012.
- Ing. Fajardo Galliani, César Augusto Carmelo. Evaluación Estructural de una de las Edificaciones del Hospital Edgardo Rebagliati Martins Usando el Método del Espectro de Capacidad. Tesis. Universidad Nacional de Ingeniería. Lima 2012
- Ing. Galicia Guarníz, William Conrad e Ing. León Vasquez, Javier Ruben.
 Interacción Sísmica Suelo-Estructura en Edificaciones de Albañilería Confinada con Plateas de Cimentación. Tesis. Universidad Privada Antenor Orego. Trujillo, 2007.
- Ing. Laura Sulca, Rodolfo Javier. Evaluación del Comportamiento Dinámico de Edificios de Concreto Armado Sin y Con Núcleo Central. Tesis. Universidad Nacional de Ingeniería. Lima 2009
- Reglamento Nacional de Edificaciones. N.T.E. E-020, E-030, E.060 y E-070
- Villarreal Castro Genner. Análisis estructural. Lima, 2008.
- Villarreal Castro Genner. Interacción Sísmica Suelo-Estructura en Edificaciones con zapatas aisladas. 1era edición. Lima, Agosto 2006.
- Villarreal Castro Genner. Interacción Suelo-Estructura en Edificios Altos. 1era edición. Lima, Octubre 2007.
- Zebaert W. Leonardo. Interacción Suelo-Estructura de cimentaciones Superficiales y Profundas: Sujetas a cargas Estáticas y Sísmicas. 1ra Edición México 1980.

CYBERGRAFÍA

- Ángel San Bartolomé. Análisis de edificios. Website: http://www.scribd.com/doc/38576700/analisis-edificios
- Instituto Geofísico Del Perú. Website: http://www.igp.gob.pe
- Introducción a los Modelos Dinámicos. Website: http://mmc.geofisica.unam.mx
- Roberto F. Morales. Cimentaciones. Website: http://www.um.edu.ar
- Sociedad Internacional de Ingeniería Geotécnica y Mecánica de Suelos.
 Website: www.issmge.org
- Universidad Nacional de Ingeniería. Biblioteca Virtual. Website: http://www.bibliotecavirtual.uni.edu.pe/
- Wikipedia. Enciclopedia multimedia Website: http://es.wikipedia.org

ARTICULO CIENTÍFICO

"INTERACCIÓN SÍSMICA SUELO – ESTRUCTURA EN LA EDIFICACIÓN DE LA RESIDENCIA ESTUDIANTIL DE LA UNIVERSIDAD NACIONAL DE HUANCAVELICA"

Bach/Ing. Civil OLARTE BREÑA, Iván Marino Bach/Ing. Civil SÁNCHEZ CHOQUE, Romel Enrique

RESUMEN:

El trabajo de investigación, que lleva por nombre "Interacción sísmica suelo – estructura en la Residencia Estudiantil de la Universidad Nacional de Huancavelica", está centrada en la aplicación de los métodos de interacción suelo - estructura, para determinar la respuesta estructural en mención. Para su aplicación se utilizaron los diferentes modelos propuestos por distinguidos científicos extranjeros cuyas investigaciones llevan muchos años en su elaboración.

Los modelos evaluados en la presente investigación fueron tomados como referencia de las publicaciones del Dr. Genner Villarrael Castro, en las cuales abundan conceptos más profundos acerca de este tópico que vincula a la Ingeniería Estructural y Geotécnica, partiendo de la premisa de que todas las estructuras deben cumplir con las exigencias de las normas de diseño sismorresistente vigentes como es la Norma Peruana E.030 – 2003.

Como herramienta principal se usó el software informático ETAPS, el cual presenta una alternativa de metodológica para el análisis de interacción sísmica suelo estructura considerando la flexibilidad de la fundación.

De los resultados más resaltantes se desprende, la siguiente conclusión:

Es notorio que la flexibilidad de la base de fundación en el análisis sísmico, a pesar que el suelo es rígido, produce cambios significativos en los modos de vibración y distribución de fuerzas, debiendo mejorarse la Norma Peruana E.030 – 2003, incluyendo la exigencia del análisis de interacción suelo – estructura, el cual describe perfectamente el comportamiento real de la edificación ante los sismos.

Palabras Claves: Seguridad y Economía

INTRODUCCIÓN:

En la actualidad, estamos orientados al cambio de métodos de cálculo más seguros, a la búsqueda de nuevas metodologías de análisis para resolver problemas constructivos, los cuales conlleven hacia un diseño seguro y económico. En tal sentido, es imperativo diseñar las estructuras considerando su verdadero comportamiento bajo la interacción del suelo – cimentación – superestructura.

Resulta imposible aislar la estructura de su interacción con el suelo de fundación; en tal sentido la interacción suelo - estructura, une a la Ingeniería Geotécnica con la Ingeniería Estructural., existiendo aún sin número de espectros y parámetros a resolver. En los últimos años el desarrollo de las capacidades de las computadoras, ha permitido analizar diversos tipos de estructuras, considerando su interacción con el suelo de fundación.

Este es el caso del Software ETAPS, el cual permite modelar y analizar edificaciones, mediante técnicas de modelamiento simple y sofisticado, lo que nos llevó a desarrollar en estudio sobre la interacción sísmica, proporcionadas por los modelos dinámicos de interacción suelo – estructura, habiendo elegido la Residencia Estudiantil de la Universidad Nacional de Huancavelica, por ser una estructura importante que alberga a gran cantidad de estudiantes de esta casa de estudios.

Para tal fin se espera desarrollar una adecuada metodología en el análisis de interacción suelo - estructura para este tipo de estructuras.

En el Primer Capítulo se plantea el problema, que dio origen a la presente investigación, y los objetivos planteados para el desarrollo de la presente Tesis.

En el Segundo Capítulo se describe el marco teórico referente a los estudios del tema interacción suelo - estructura, desarrollando de esta forma la hipótesis de la investigación y las variables de estudio.

En el Tercer Capítulo se desarrolla la metodología de investigación para la tesis, considerando el ámbito de estudio, tipo de investigación, etc.

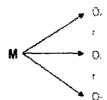
El Cuarto Capítulo muestra los resultados, como la descripción de la estructura, la metodología de modelación de la edificación por el programa ETAPS, analizando los cuatro modelos dinámicos propuestos en la presente tesis bajo la acción del espectro de aceleración y acelerograma tiempo - historia de Lima (17.10.1966); de igual forma, se presenta la discusión de resultados en forma de estadística descriptiva.

En las conclusiones se discuten los resultados y las recomendaciones de uso y aplicación científica.

La investigación está dirigida a ingenieros civiles, egresados, estudiantes e investigadores en el área de la mecánica estructural.

METODOLOGÍA:

Tipo:


De acuerdo al fin que persique: APLICADA

Nivel:

El estudio de investigación arribo hasta un nivel Explicativo; pues se centra en buscar las causas o los porqués de la ocurrencia del fenómeno, de cuáles son las variables que presenta y de cómo se dan sus interrelaciones.

Diseño:

El diseño utilizado en el presente trabajo de investigación es no experimental: descriptivo, correlacional y transversal.

Donde:

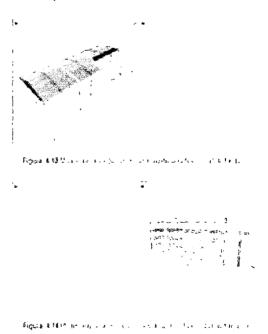
O_x, O_y y O_z : Indican las observaciones obtenidas en cada una de

las tres variables distintas.

M : es la muestra.

r : es la relación entre las

variables.

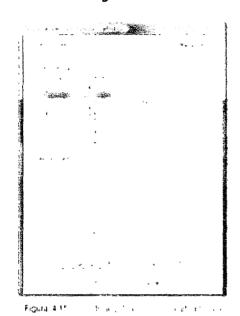

Población y Muestra:

Población: Edificación de la residencia del la Universidad Nacional de Huancavelica.

Muestra: Edificación de la residencia del la Universidad Nacional de Huancavelica.

PROCEDIMIENTO:

Como el programa informático de soporte se utilizó el ETAPS V9.7.3, analizando la estructura por el método espectral para sismos, respecto al eje más largo de la edificación y a través de los acelerogramas reales proporcionados por el CISMID – UNI, correspondiente al sismo de Lima (17-10-1966). Cuya aceleración máxima es de 2.693m/s2.


De acuerdo a los datos de entrada y la modelación de la edificación, en las figuras 4.13 y 4.14 se muestran los modelos espaciales de cálculo para el edificio sin considerar la flexibilidad de la base de fundación y considerando la flexibilidad de la misma.

El factor de escala necesario para el ETAPS se calculó con la fórmula para la aceleración

espectral de la Norma E.030, para cada una de las direcciones horizontales analizadas, definido por:

$$S_{ij} = \frac{ZHCS}{R} \alpha$$

dichos datos se cargaron en el programa como muestra la Figura Nº 4.15

Se utilizó las combinaciones de carga de acuerdo a la norma como se muestra:

```
COMBO 1 = 1.4 CM + 1.7 CV

COMBO 2 = 1.25 CM + SX

COMBO 3 = 1.25 CM - SX

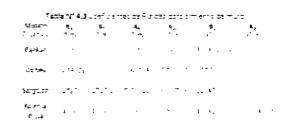
COMBO 4 = 1.25 CM + SY

COMBO 5 = 1.25 CM - SY

COMBO 6 = 0.9 CM + SX

COMBO 7 = 0.9 CM - SX

COMBO 8 = 0.9 CM + SY


COMBO 9 = 0.9 CM - SY

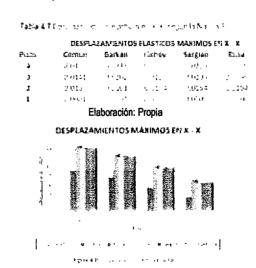
ENVOLVE = COMBO 1 + COMBO 2 + ... + COMBO 9
```

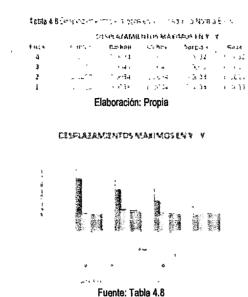
Para el análisis común se consideró a la zapata empotrada en el terreno.

Para el análisis que incluyen la rigidez del suelo (modelos dinámicos) se asignaron los coeficientes de rigidez según las tablas N° 4.2 - 4.3 y el modelo dinámico de la figura N° 2.3

Riturians Resemble	, t,	β. Itum	Ε', 1 == 1	. ¥., 17 ¬		H.
garê p	. jej	17.75	* Not	191-1	٠,	
to tes	(1) + 1) { 1	1	g* (1)	(1)	a 1	
targr 27	ाता स्था ।	W.C.	5317	101 1 1	- 1 1	
figning Pass	100, 111 (6.74	S C FAI	11430 × 4	وأموس	4 9

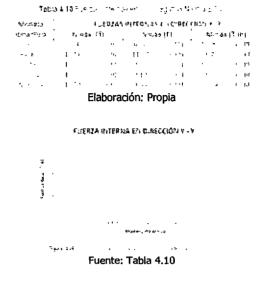
RESULTADOS:




Elaboración: Propia

Fuente: Tabla N° 4.5

Tal como se esperaba, la flexibilidad de la base de fundación incrementa los periodos de las formas de vibración. El incremento más notorio se da para la primera forma de vibración por el modelo de Barkan.



Como era de esperarse, al considerar la flexibilidad de la base de fundación, se incrementa los desplazamientos de los centros de masa en los ejes OX y en los desplazamientos en el eje OY, se muestra una reducción de desplazamientos, producto de la sobre rigidez de la fundación, mostrando una gran diferencia entre lo esperado por la Norma Peruana E.030, siendo el más notorio el modelo dinámico de Barkan y Sargian.

En las figuras Nº 4.23, se muestra las fuerzas axiales calculadas por el programa ETAPS, sin considerar la base de fundación y considerando la flexibilidad de la misma, siendo notorio la reducción de las fuerzas internas de los elementos verticales para los momentos dinámicos

En las figura 4.26 , se muestra las fuerzas axiales, sin considerar la flexibilidad de la fundación y considerando la flexibilidad de la misma, se puede observar que al aplicar los modelos dinámicos, las fuerzas en el eje OY aumentan considerablemente, en comparación al modelo de análisis empotrado.

CONCLUSIONES:

Habiendo cumplido con los objetivos planteados en la investigación, es decir, realizar el análisis de interacción sísmica suelo estructura de la residencia universitaria se concluye que:

- El lograr que el suelo de fundación interactúe en simultáneo con la estructura, permite obtener resultados que describen el verdadero comportamiento de este sistema frente a un evento sísmico.
- 2. Utilizando modelos dinámicos de interacción suelo - estructura se puede observar que la flexibilidad de la base de fundación influye directamente en la determinación de los parámetros de cálculo. Una comparación entre un modelo empotrado y considerando la flexibilidad de lavase de fundación permite que:
 - Le periodo de la primera forma de vibración libre, aumente hasta un 83.85% observado en el modelo dinámico de Barkan.
 - Para el caso de la frecuencia de la primera forma de vibración libre, disminuya en un 45.61% observado en el modelo dinámico de Barkan.

- 3. La comparación de los resultados obtenidos por los diferentes modelos dinámicos nos permite indicar que el mayor efecto de flexibilidad de la base de fundación se da en el modelo de la Norma Rusa y el menor efecto se da en el modelo de Barkan, para el caso de zapatas combinadas.
- 4. Del cálculo por la Norma Peruana E.030-2003, se concluye que la flexibilidad de la base de fundación permite el incremento de desplazamientos del centro de masas en el eje OX del 58.07% hasta 62.99% y en el eje OY se muestra una reducción de desplazamientos en producto a la sobre rigidez de la cimentación hasta un 78%, así mismo se produce una reducción de fuerzas axiales de un 23.29%; disminuyen las fuerzas cortantes de hasta un 20.89% y disminuyen los momentos flectores hasta un 5.68% esto en la dirección X-X; las fuerzas axiales aumentan hasta un 71.83%; aumentan las fuerzas cortantes en un 83.80% y se observa un aumento en el momento flector hasta un 82.06%.
- 5. Se demostró que el análisis espectral por la Norma Peruana de diseño sismorresistente E.030 2003 es solo referencial para el caso de edificaciones Aporticadas con zapatas combinadas sobre suelos rígidos, ya que sus valores están por debajo de los obtenidos con el acelerograma real de Lima.
- Se demostró que el trabajo de modelo dinámico adaptado al programa informático ETAPS, describe perfectamente el problema de interacción suelo – estructura para edificaciones con zapatas combinadas y completamente rígidas.
- 7. En base al programa ETAPS se elaboró una forma de modelación de la edificación con sus cimentaciones, considerando la flexibilidad de la base de fundación, para el cálculo sísmico por la Norma Peruana E.030 2003 y bajo la acción del acelerograma real de Lima (17.10.1966), pues es el de mayor registro en la historia del Perú.
- 8. Si el reforzamiento estructural se realiza sin considerar la interacción suelo estructura, entonces el nivel de reforzamiento de la edificación se incrementará, aumentando los gastos de la misma.

9. Es notorio que la flexibilidad de la base de fundación en el análisis sísmico, a pesar que el suelo es rígido, produce cambios significativos en los modos de vibración y distribución de fuerzas, debiendo de mejorarse la Norma Peruana E.030 – 2003, incluyendo la exigencia del análisis de interacción suelo – estructura, el cual describe perfectamente el comportamiento real de la edificación ante sismos.

REFERENCIAS BIBLIOGRÁFICAS:

- G. Lopez Rincon, C-Zea Constantino y R. Rivera Constantino. Una Solución Directa al Problema de Interacción Suelo Estructura. Departamento de Geotecnia. UNAM. D.F. México. 2011.
- Hernández Sampieri, Fernández Callado y Baptista Lucio. Metodología de la Investigación Sta Edición.
- Ing. Diego Curasma, Wladimir. Interacción Sísmica Suelo-Estructura en Edificaciones Aporticadas. Tesis. Universidad Nacional de Huancavelica. Huancavelica 2012.
- Ing. Fajardo Galliani, César Augusto Carmelo. Evaluación Estructural de una de las Edificaciones del Hospital Edgardo Rebagliati Martins Usando el Método del Espectro de Capacidad. Tesis. Universidad Nacional de Ingeniería. Lima 2012
- Ing. Galicia Guarníz, William Conrad e Ing. León Vasquez, Javier Ruben. Interacción Sísmica Suelo-Estructura en Edificaciones de Albafillería Confinada con Plateas de Cimentación. Tesis. Universidad Privada Antenor Orego. Trujillo, 2007.
- Ing. Laura Sulca, Rodolfo Javier. Evaluación del Comportamiento Dinámico de Edificios de Concreto Armado Sin y Con Núcleo Central. Tesis. Universidad Nacional de Ingeniería. Lima 2009.
- Reglamento Nacional de Edificaciones.
 N.T.E. E-020, E-030, E.060 y E-070
- Villarreal Castro Genner. Análisis estructural. Lima, 2008.
- Villarreal Castro Genner. Interacción Sísmica Suelo-Estructura en Edificaciones con zapatas aisladas. 1era edición. Lima, Agosto 2006.
- Villarreal Castro Genner. Interacción Suelo-Estructura en Edificios Altos. 1era edición. Lima, Octubre 2007.
- Zebaert W. Leonardo. Interacción Suelo-Estructura de cimentaciones Superficiales y Profundas: Sujetas a cargas Estáticas y Sísmicas. 1ra Edición México 1980.

ANEXOS

FOTOGRAFIAS

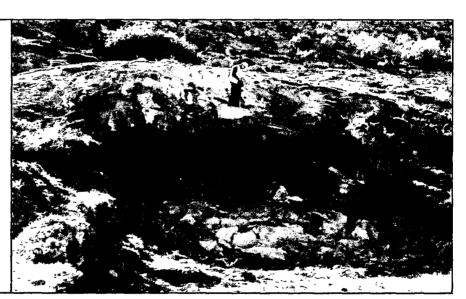


IMAGEN N°01

Vista panorámica de la Residencia Estudiantil de la Universidad Nacional de Huancavelica.

IMAGEN N°02

Tipo de suelo existente en la Residencia Estudiantil de la Universidad Nacional de Huancavelica.

IMAGEN N°03

Vista lateral de la Residencia Estudiantil de la Universidad Nacional de Huancavelica, ubicada en la Av. Universitaria – Paturpampa – Huancavelica.

TABLAS

Tabla N° 01: Puntos para modelación de terreno

		COORDENADAS		7
PUNTO	E	N		OBS.
Α			2715.00	EETA CIONIA
A	504009.00	8587413.00	3715.00	ESTACION 1
В	503988.00	8587373.00	3712.64	BM
1	503986.41	8587389.52	3710.23	RIO
2	503989.19	8587386.02	3712.61	CARRETERA
3	503991.66	8587379.53	3712.72	CARRETERA
4	503992.75	8587361.63	3717.11	CASA
5	503998.89	8587348.74	3726.66	ROCA
6	504004.20	8587342.38	3729.70	ROCA
7	504017.85	8587353.87	3729.23	CERCO
8	504013.31	8587367.50	3724.16	CERCO
9	504007.88	8587383.43	3713.98	CERCO
10	504007.93	8587384.83	3713.92	CARRETERA
11	504006.18	8587391.63	3713.95	CARRETERA
12	504003.74	8587399.39	3711.88	RIO
13	504022.84	8587404.60	3713.12	RIO
14	504025.36	8587398.61	3715.57	CARRETERA
15	504027.46	8587392.51	3715.55	CARRETERA
16	504028.72	8587391.20	3715.65	CERCO
17	504043.22	8587397.57	3717.18	CERCO
18	504043.00	8587398.55	3717.08	CARRETERA
19	504040.19	8587404.46	3717.05	CARRETERA
20	504038.44	8587409.97	3714.77	RIO
21	504063.34	8587417.89	3716.81	RIO
22	504066.78	8587415.31	3719.63	CARRETERA
23	504068.93	8587408.99	3719.54	CARRETERA
24	504069.28	8587408.24	3719.53	CERCO
25	504078.44	8587412.04	3720.75	CERCO
26	504079.80	8587412.93	3720.78	CARRETERA
27	504082.38	8587420.77	3721.05	CARRETERA
28	504080.87	8587431.74	3719.76	RIO
29	504016.45	8587372.83	3726.06	MURO CONTENCION
30	504016.28	8587373.36	3722.02	MURO CONTENCION
31	504028.92	8587388.69	3721.10	ROCA
32	504032.65	8587384.14	3722.68	MURO CONTENCION
33	504037.77	8587392.82	3719.50	ROCA
34	504046.20	8587391.83	3722.27	MURO CONTENCION
35	504098.00	8587411.58	3725.70	ESTACION 2
36	504098.00	8587411.58	3725.70	ESTACION 1
37	504009.00	8587413.00	3713.87	ESTACION 2
38	504049.63	8587413.63	3713.79	CARRETERA
39	504077.88	8587420.58	3720.26	CARRETERA
40	504081.58	8587418.67	3720.30	CARRETERA
41	504075.56	8587411.27	3720.21	CARRETERA
42	504077.39	8587409.56	3720.60	CARRETERA
43	504084.83	8587415.41	3720.42	CARRETERA
44	504086.86	8587409.10	3720.82	CARRETERA
45	504077.81	8587407.24	3720.78	CARRETERA
46	504077.81	8587404.76	3721.20	CARRETERA
47	504075.55	8587403.40	3720.78	CARRETERA
48	504083.55	8587397.87	3721.93	CARRETERA
49	504076.64	8587400.55	3721.70	CARRETERA
50	504070.04	8587386.08	3724.05	CERCO
51	504056.73	8587379.37	3724.03	CARRETERA
52	504036.73	8587349.23	3727.60	CARRETERA
53	504013.34	8587355.24	3727.50	CARRETERA
54	504010.12			
		8587334.40	3728.65	CARRETERA
55	503995.82	8587337.89	3728.68	CERCO
56	504009.82	8587356.47	3727.48	CERCO
57	504017.34	8587363.32	3726.86	CERCO

Tabla N° 02 Evaluación Insitu de resistencia de material rocoso

DESCRIPCIÓN	RESISTENCIA COMPRESION SIMPLE (Kg. cm²)	HUELLA Y SONIDO
May Manda	10-15	El material se disereza completamente con un golpe del pico del martillo y se deshace con navaja
Book	30-250	El moterial se indenia de 1.5 a 3 mm con el pico del martillo y se deshace con la navaja.
Meta	250-500	El material NO se deshace con la navaja. La matestra soste- nida en la mano se tempe con UN (1) golpe de martillo.
Moderadamente dina	500-1000	La innestra se rompe con VARIOS golpes de martillo.
Dury	1000-2500	La muestra depositada en el suelo se rompe con UN (1) golpe
Muy dara	> 2560	Lo muestra se rompe con dificultad a golpes con el pero del martillo. Sonado MACIZO.

Fuentes: Departamento de Geotecnia, Universidad Nacional de Ingenieria

Tabla N° 03 Modulo de Young y coeficientes de Poisson

MATERIAL	E (GPa)	Y
Aleactones de aluminio	68 - 73	0.33
Asbesto-cemento	34	
Bronce Fierro fundido	78 - 110 80 - 170	0,36
] ""
Cohereto	14 ~ 30 107 ~ 131	0.1 - 0.15
***************************************	1	0.34
Vidrio Piomo	46 - *3 4.8 - 1*	0.24
Acero	200 - 212	0.27
*****	AW - 212	No.
Plásticos ABS		
,	1.7	0.33
Nyton	1.4 - 2.75	
Acrilico	6.0	0.33
Polietileno	0.8	0.46
Polistueno	5,0	0.4
P\C ngido	24-27	
Rocas		
Grainte	50	0.28
Limestone	55	0.21
Cuntzata	24.0 - 44.8	
Arenisca	1.75 - 4.8	0.28
Scinst	65-18.6	

Fuentes: Departamento de Ingeniería Civil, Universidad de Chile

Tabla Nº 04 Características Físico Mecánicas de varios tipos de Roca

TIPO DE ROCA	RESISTENCIA A	DENSIDAD
	COMPRESION (Kg cm²)	(Tas.m ²)
Andesata	1 500-2 500	2,5 a 2.8
Arcillita	280-800	2.2 a 2.7
Alenco	\$0-2,000	1,6 # 2.9
Basidio	2 000-2 000	2 ~ a 2.8
Caliza	500-1.500	1.5 = 2.8
Conglomerado	1.460	2.0 a 2 7
Cuaron	900-4 700	2.3 > 2.7
Dacita	1204-5000	2.5 a 2.75
Dialsosa	1.60/-2.400	2.8 a 3.1
Doloma	360-5.600	22.19
Esquisto	1178-2.500	17319
Gabro	1506-2860	2.8 a 3.1
Gueis	1,50K)-3,0KN)	2.5 a 2.5
Grazato alterado	108-1-450	25 a 2.6
Granto sano	\$00-2,700	25 à 25
Grautvaca	2,000-2,500	1.6 a 1.7
Marga	35-1 970	26 m 2.*
Marmol	800-1 500	26 a 2 5
Micacita	204-653	2,4 a 3,2
Pizana	2,000-2,500	27025
Rialita	\$00-1600	2.45 a.2.6
Ттэдшиз	3,300	2.70
Yeso	40-430	2.2 a 2.3

Fuentes: Departamento de Geotecnia, Universidad Nacional de Ingeniería

Tabla Nº 05 Valores típicos de parámetros de resistencia para rocas

TIPO DE ROCA	P.U. SECO KN/M3	COHESION (MPA)	ANGULO DE FRICCION (°)
ROCAS IGNEAS DURAS: GRANITO BASALTO	25-30	35-55	35-45
ROCAS METAMORFICAS: CUARCITA, NEISS, PIZARRAS.	25-28	20-40	30-40
ROCAS SEDIMENTARIAS DURAS: CALIZA, DOLOMITA, ARENISCA.	23-28	10-30	35-45
ROCAS SEDIMENTARIAS BLANDAS: ARENISCAS, LUTITAS, LIMONITAS	17-23	1-20	25-35

Fuentes: Ensayos en rocas, elaborado por Jaime Suarez Díaz

Tabla Nº 06 Valores tabulados para espectro de pseudo aceleraciones

С	Т	ZUCS/R
2.500	0.10	0.141
2.500	0.20	0.141
2.500	0.30	0.141
2.500	0.40	0.141
2.000	0.50	0.113
1.667	0.60	0.094
1.429	0.70	0.080
1.250	0.80	0.070
1.111	0.90	0.063
1.000	1.00	0.056
0.909	1.10	0.051
0.833	1.20	0.047
0.769	1.30	0.043
0.714	1.40	0.040
0.667	1.50	0.038
0.625	1.60	0.035
0.588	1.70	0.033
0.556	1.80	0.031
0.526	1.90	0.030
0.500	2.00	0.028
0.333	3.00	0.019
0.250	4.00	0.014
0.200	5.00	0.011
0.167	6.00	0.009
0.143	7.00	0.008
0.125	8.00	0.007
0.111	9.00	0.006
0.100	10.00	0.006

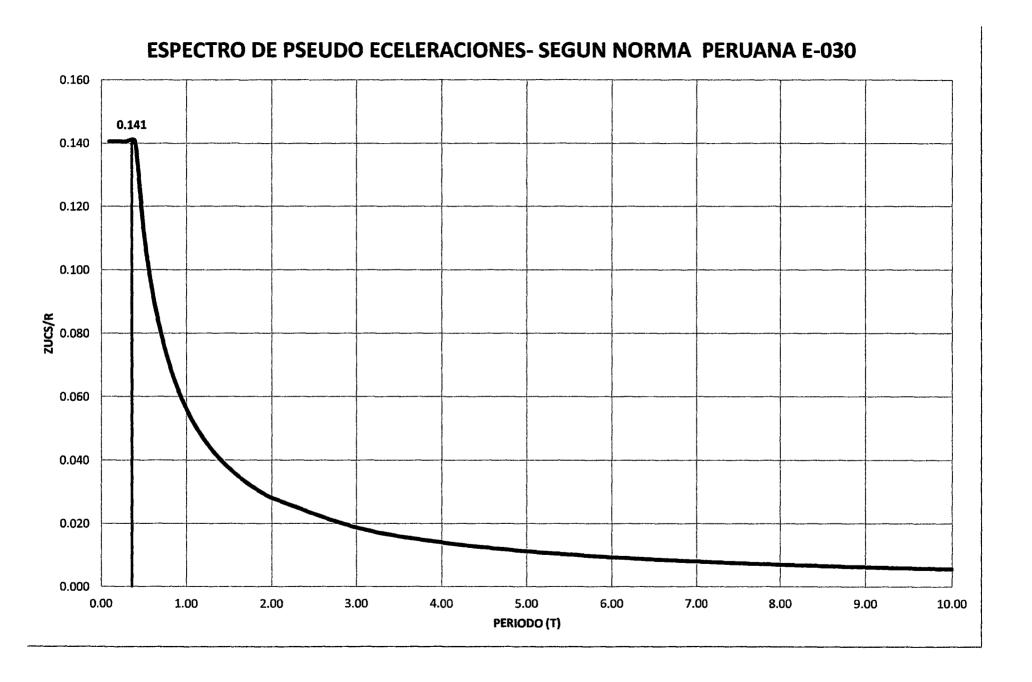


Tabla N° 07 Acelerograma del sismo producido en Lima el 17 - 10 - 1966

- 1	Tiempo	Value		Tiempo	Value		Tiempo	Value		Tiempo	Value	,	Tiempo	Value		Tiempo	Value
N.	(seg.)	(m/seg2)	N°	(seg.)	(m/seg2)	N,	(seg.)	(m/seg2)	N.	(seg.)	(m/seg2)	N.	(seg.)	(m/seg2)	N.	(seg.)	(m/seg2)
0001	0.01	-14.250	0048	0.94	-2.130	0095	1.88	2.740	0142	2.82	-9.710	0189	3.76	2.810	0236	4.70	-5.000
0002	0.02	-7.780	0049	0.96	-2.840	0096	1.90	-1.900	0143	2.84	-6.040	0190	3.78	-3.140	0237	4.72	2.640
0003	0.04	-6.300	0050	0.98	-8.460	0097	1.92	1.000	0144	2.86	-2.580	0191	3.80	3.040	0238	4.74	1.210
0004	0.06	1.490	0051	1.00	-0.870	0098	1.94	7.570	0145	2.88	-1.420	0192	3.82	6.700	0239	4.76	-9.740
0005	0.08	2.990	0052	1.02	5.710	0099	1.96	12.050	0146	2.90	-0.830	0193	3.84	-4.390	0240	4.78	-3.140
0006	0.10	-1.750	0053	1.04	-0.980	0100	1.98	4.920	0147	2.92	-3.990	0194	3.86	-4.680	0241	4.80	0.230
0007	0.12	1.730	0054	1.06	-4.470	0101	2.00	-4.220	0148	2.94	-5.060	0195	3.88	0.280	0242	4.82	-1.760
0008	0.14	5.060	0055	1.08	-1.920	0102	2.02	-7.450	0149	2.96	2.610	0196	3.90	0.490	0243	4.84	9.020
0009	0.16	0.140	0056	1.10	1.760	0103	2.04	-9.780	0150	2.98	8.040	0197	3,92	-0.090	0244	4.86	11.940
0010	0.18	-4.580	0057	1.12	6.090	0104	2.06	-9.520	0151	3.00	4.770	0198	3.94	-10.980	0245	4.88	0.880
0011	0.20	0.270	0058	1.14	8.770	0105	2.08	-4.880	0152	3.02	-1.160	0199	3.96	-5.540	0246	4.90	-2.080
0012	0.22	6,340	0059	1.16	6.960	0106	2.10	-1,510	0153	3.04	-2.070	0200	3.98	6.690	0247	4.92	8.560
0013	0.24	3.440	0060	1.18	2.010	0107	2.12	0.800	0154	3.06	3.940	0201	4.00	2.010	0248	4.94	3.680
0014 0015	0.26	1.710	0061	1.20	0.920	0108	2.14	7.800	0155	3.08	-0.680	0202	4.02	4.470	0249	4.96	-8.020
0015	0.28 0.30	-2.350 -4.160	0062 0063	1.22	-2.340	0109 0110	2.16	5.320	0156 0157	3.10	-4.170	0203	4.04	8.480	0250	4.98	-5.100
0017	0.30	-0.100	0064	1.24 1.26	-9.370 -8.020	0110	2.18 2.20	-7.880 -10.920	0157	3.12 3.14	-4.990 -13,830	0204 0205	4.06 4.08	6.340 8.220	0251 0252	5.00 5.02	-6,900 -6,620
0017	0.32	-4.360	0065	1.28	2.380	0111	2.20	-6.870	0159	3.14	-13.630	0205	4.10	4.530	0252	5.04	4.050
0019	0.34	-3.770	0066	1.30	3.830	0112	2.24	-6.870 -6.870	0159	3.18	-7.870	0200	4.10	-3.990	0254	5.04	2.260
0020	0.38	3.120	0067	1.32	-0.110	0114	2.26	-4.200	0161	3.20	-6.740	0208	4.14	-0.600	0255	5.08	-8.420
0021	0.40	0.360	0068	1.34	-0.960	0115	2.28	0.600	0162	3.22	-1.560	0209	4.16	6.460	0256	5.10	-5.850
0022	0.42	2.890	0069	1.36	-4.160	0116	2.30	1.340	0163	3.24	1.480	0210	4.18	-0.850	0257	5.12	7.150
0023	0.44	8.300	0070	1.38	-5.650	0117	2.32	0.420	0164	3.26	5.560	0211	4.20	-12.550	0258	5.14	9.390
0024	0.46	-0.830	0071	1.40	-3.940	0118	2.34	-0.600	0165	3.28	10.100	0212	4.22	-7.250	0259	5.16	2.070
0025	0.48	-6.090	0072	1.42	-4.590	0119	2.36	-2.040	0166	3.30	2.500	0213	4.24	-0.280	0260	5.18	-1.880
0026	0.50	-2.190	0073	1.44	-6.360	0120	2.38	-4.470	0167	3.32	-3.980	0214	4.26	-11.600	0261	5.20	-3.830
0027	0.52	-3.510	0074	1.46	-5.170	0121	2.40	-7.310	0168	3.34	2.170	0215	4.28	-11.610	0262	5.22	-3.790
0028	0.54	-6.270	0075	1.48	-3.310	0122	2.42	-7.610	0169	3.36	4.110	0216	4.30	2.860	0263	5.24	2.520
0029	0.56	-2.990	0076	1.50	-2.410	0123	2.44	-3.490	0170	3.38	-1.210	0217	4.32	0.680	0264	5.26	3.100
0030	0.58	2.420	0077	1.52	-1.780	0124	2.46	-2.970	0171	3.40	-1.240	0218	4.34	-6.210	0265	5.28	4.110
0031	0.60	1.570	0078	1.54	-1.290	0125	2.48	-6.220	0172	3.42	-1.580	0219	4.36	-0.020	0266	5.30	10.960
0032	0.62	0.790	0079	1.56	1.200	0126	2.50	-1.310	0173	3.44	-6.740	0220	4.38	8.870	0267	5.32	-0,410
0033	0.64	7.570	0080	1.58	3.260	0127	2.52	7.300	0174	3.46	-10.060	0221	4.40	7.100	0268	5.34	-13.980
0034	0.66	5.940	0081	1.60	-0.490	0128	2.54	2.780	0175	3.48	-6.520	0222	4.42	0.790	0269	5.36	-12.090
0035	0.68	-1.770	0082	1.62	-5.910	0129	2.56	-3.120	0176	3.50	0.530	0223	4.44	1.620	0270	5.38	-9.870
0036	0.70	-2.160	0083	1.64	-7.380	0130	2.58	1.550	0177	3.52	0.530	0224	4.46	7.280	0271	5.40	-3.970
0037	0.72	1.040	0084	1.66	-5.700	0131	2.60	5.110	0178	3.54	-3.220	0225	4.48	-0.880	0272	5.42	6.320
0038	0.74	6.390	0085	1.68	-1.950	0132	2.62	6.150	0179	3.56	-0.460	0226	4.50	0.950	0273	5.44	4.210
0039 0040	0.76	10.100	0086	1.70	2.060	0133	2.64	9.280	0180	3.58	0.900	0227	4.52	13.180	0274	5.46	-4.100
0040	0.78 0.80	0.160 -10.080	0087 0088	1.72 1.74	2.530	0134 0135	2.66	13.230	0181	3.60	-2.040	0228	4.54	6.090	0275	5.48	2.510
0041	0.80	-8.210	0088	1.74	0.760 -4.220	0135	2.68 2.70	10.120 3.300	0182 0183	3.62 3.64	3.980 10.840	0229 0230	4.56 4.58	0.270 -0.720	0276 0277	5.50 5.52	1.820
0042	0.82	-5.640	0090	1.78	-4.220 -8.440	0136	2.70	0.060	0183	3.66	5.640	0230	4.58 4,60	-0.720 -6.650	0277	5.52 5.54	-9.260 -1.220
0043	0.86	-8.030	0091	1.70	-8.440 -4.630	0137	2.72	-2.700	0185	3.68	3.460	0231	4.62	-0.050 -11.930	0278	5.54 5.56	2.510
0045	0.88	-7.810	0092	1.82	-0.670	0139	2.76	-3.110	0186	3.70	-2.090	0232	4.64	-6.870	0279	5.58	-6.210
0046	0.90	-2.300	0093	1.84	-3.350	0140	2.78	-1.270	0187	3.72	-8.230	0233	4.66	1.640	0280	5.60	0.200
0047	0.92	-3.520	0094	1.86	1.260	0141	2.80	-5.800	0188	3.74	1.240	0235	4.68	-1.700	0282	5.62	-0.960
المنتتب			0027	2,30	2.200			5,000	9200	J.1 T	712-7-5	7233	7.00	2.70	U432	3.02	0,500

	Tiempo	Value	· · ·	Tiempo	Value		Tiempo	Value		Tiempo	Value		Tiempo	Value		Tiempo	Value
N°	(seg.)	(m/seg2)	N'	(seg.)	(m/seg2)	N.	(seg.)	(m/seg2)	N°	(seg.)	(m/seg2)	N"	(seg.)	(m/seg2)	N.	(seg.)	(m/seg2)
0283	5.64	-5.730	0330	6.58	6.060	0377	7.52	-2.800	0424	8.46	6.060	0471	9.40	-8.950	0518	10.34	-2.130
0284	5.66	6.590	0331	6.60	3.760	0378	7.54	-13.970	0425	8.48	-22.620	0472	9.42	-19.140	0519	10.36	5.420
0285	5.68	9.530	0332	6.62	4.180	0379	7.56	-6.440	0426	8.50	-31.300	0473	9.44	6.270	0520	10.38	4.090
0286	5.70	7.430	0333	6.64	1.270	0380	7.58	-1.920	0427	8.52	-2.740	0474	9.46	2.570	0521	10.40	-5.280
0287	5,72	6.330	0334	6.66	4.970	0381	7.60	-7.640	0428	8.54	-1.520	0475	9.48	-10.700	0522	10.42	11.320
0288	5.74	6.520	0335	6.68	10.040	0382	7.62	5.430	0429	8.56	-4.510	0476	9.50	-4.660	0523	10.44	-2.140
0289	5.76	8.370	0336	6.70	4.280	0383	7.64	15.400	0430	8.58	-1.740	0477	9.52	1.120	0524	10.46	-6.390
0290	5.78	4.480	0337	6.72	-4.670	0384	7.66	6.850	0431	8.60	-2.930	0478	9.54	-6.080	0525	10.48	9.230
0291	5.80	-0.300	0338	6.74	-1.130	0385	7.68	3.370	0432	8.62	4.610	0479	9.56	-14.560	0526	10.50	8.020
0292	5.82	0.560	0339	6.76	1.220	0386	7.70	0.580	0433	8.64	-3.260	0480	9.58	-3.150	0527	10.52	10.570
0293	5.84	7.180	0340	6.78	-14.380	0387	7.72	8.020	0434	8.66	-18.770	0481	9.60	5.340	0528	10.54	10.040
0294	5.86	-0.360	0341	6.80	-16.250	0388	7.74	4.080	0435	8.68	-25.950	0482	9.62	-1.160	0529	10.56	15.270
0295	5.88	-7.450	0342	6.82	-1.410	0389	7.76	-9.990	0436	8.70	-0.130	0483	9.64	8.820	0530	10.58	15.150
0296	5.90	-6.860	0343 0344	6.84	4.200	0390	7.78	-7.220	0437	8.72	16.480	0484	9.66	13.480	0531	10.60	7.720
0297 0298	5.92 5.94	-1.560 3.620	0344	6.86 6.88	0.900	0391 0392	7.80 7.82	2.070 11.570	0438 0439	8.74 8.76	-2.670 -4.650	0485 0485	9.68 9.70	5.960 13.120	0532 0533	10.62 10.64	2.980 5.030
0298	5.96	-1.040	0345	6.90	0.480 3.350	0392	7.82 7.84	11.570	0439	8.78	-4.050 11.760	0485	9.70	11.530	0534	10.64	-3.120
0300	5.98	0.630	0347	6.92	-5.030	0394	7.86	-5.740	0440	8.80	14.040	0487	9.74	-8.310	0535	10.68	-8.820
0300	6.00	2.870	0347	6.94	0.340	0395	7.88	-13,170	0442	8.82	14.940	0489	9.76	-3.170	0536	10.70	-15.390
0302	6.02	-7.860	0349	6.96	11,470	0396	7.90	4.310	0443	8.84	13.850	0490	9.78	2.360	0537	10.72	-9.460
0303	6.04	-1.000	0350	6.98	13.440	0397	7.92	2.530	0444	8.86	1.070	0491	9.80	-6.420	0538	10.74	15.630
0304	6.06	4.630	0351	7.00	0.800	0398	7.94	-8.480	0445	8,88	3.610	0492	9.82	-9.740	0539	10.76	-2.380
0305	6.08	-5.820	0352	7.02	-16,660	0399	7.96	-11.910	0446	8.90	12.870	0493	9.84	-5.960	0540	10.78	-22.540
0306	6.10	-10.070	0353	7.04	-7.110	0400	7.98	-4.250	0447	8.92	7.360	0494	9.86	16.910	0541	10.80	-2.560
0307	6.12	-13.070	0354	7.06	-2.680	0401	8.00	1.710	0448	8.94	12.350	0495	9.88	17.930	0542	10.82	23.430
0308	6.14	-1.620	0355	7.08	-1.490	0402	8.02	-1.420	0449	8.96	15.680	0496	9.90	13.860	0543	10.84	6.700
0309	6.16	4.920	0356	7.10	-5.380	0403	8.04	10.790	0450	8.98	8.830	0497	9.92	14.650	0544	10.86	-8.630
0310	6.18	-3.370	0357	7.12	-7.820	0404	8.06	7.960	0451	9.00	-2.720	0498	9.94	-13.820	0545	10.88	11.350
0311	6.20	-6.820	0358	7.14	-0.460	0405	8.08	-6.070	0452	9.02	-13.080	0499	9.96	-24.680	0546	10.90	5.490
0312	6.22	-1.730	0359	7.16	3.340	0406	8.10	4.350	0453	9.04	-8.100	0500	9.98	-7.340	0547	10.92	-21.810
0313	6.24	10.170	0360	7.18	12.650	0407	8.12	3.740	0454	9.06	-12.370	0501	10.00	6.810	0548	10.94	- 9 .950
0314	6.26	18.050	0361	7.20	11.330	0408	8.14	-6.150	0455	9.08	-14.830	0502	10.02	7.200	0549	10.96	7.440
0315	6.28	6.720	0362	7.22	4.240	0409	8.16	5.180	0456	9.10	5.220	0503	10.04	-2.590	0550	10.98	-0.670
0316	6.30	-5.250	0363	7.24	4.140	0410	8.18	19.010	0457	9.12	-0.840	0504	10.06	5.840	0551	11.00	2.090
0317	6.32	0.860	0364	7.26	2.550	0411	8.20	12.910	0458	9.14	-18.870	0505	10.08	28.610	0552	11.02	1.270
0318	6.34	6.180	0365	7.28	7.190	0412	8.22	13.910	0459	9.16	-13.310	0506	10.10	24.230	0553	11.04	-11.970
0319	6.36	0.200	0366	7.30	6.710	0413	8.24	22.650	0460	9.18	-4.280	0507	10.12	0.460	0554	11.06	-12.420
0320	6.38	-8.120	0367	7.32	0.680	0414	8.26	17.700	0461	9.20	1.270	0508	10.14	-6.260	0555	11.08	-2.300 5.360
0321	6.40	-10.260	0368	7.34	7.330	0415	8.28	-1.060	0462	9.22	14.430	0509	10.16	3.940	0556	11.10	5.360
0322 0323	6.42	-5.740 -3.160	0369 0370	7.36	7.100	0416 0417	8.30	-16.150	0463 0464	9.24	15.480	0510	10.18	2.300 -14.530	0557 0558	11.12	16.050
0323	6.44 6.46	-2.160 2.790	0370	7.38 7.40	-5.460 -2,010	0417	8.32 8.34	-17.380 -20.180	0464	9.26 9.28	5.150 8.980	0511 0512	10.20 10.22	-14.530 -14.400	0559	11.14 11.16	17.050 4.810
0324	6.48	3.300	0371	7.40 7.42	-2.010 15.320	0418	8.36	-20.180	0465	9.28	1.560	0512	10.22	-0.130	0559	11.16	-13.480
0326	6.50	0.520	0372	7.42	5.860	0419	8.38	13.210	0466	9.32	-4.650	0513	10.24	1.860	0561	11.18	-13.480 -11.160
0327	6.52	6.100	0374	7.44	-11.020	0421	8.40	26.580	0468	9.34	6.530	0515	10.28	-11.960	0562	11.20	-0.970
0328	6.54	11.320	0375	7.48	-1.540	0422	8.42	18.060	0469	9.36	5.960	0516	10.20	-13.400	0563	11.24	-5.130
0329	6.56	9,560	0376	7.50	9.230	0423	8.44	15.270	0470	9.38	9.770	0517	10.32	-3.310	0564	11.26	-10.190

	Tiempo	Value		Tiempo	Value		Tiempo	Value		Tiempo	Value		Tiempo	Value		Tiempo	Value
N"	(seg.)	(m/seg2)	N°	(seg.)	(m/seg2)	N.	(seg.)	(m/seg2)	N°	(seg.)	(m/seg2)	N°	(seg.)	(m/seg2)	N.	(seg.)	(m/seg2)
0565	11.28	-13.900	0612	12.22	1.790	0659	13.16	-6.920	0706	14.10	18.880	0753	15.04	-29.070	0800	15.98	10.230
0566	11.30	-10.810	0613	12.24	5.200	0660	13.18	3.040	0707	14.12	8.020	0754	15.06	-8.720	0801	16.00	17.680
0567	11.32	-4.040	0614	12.26	-10.780	0661	13.20	-5.580	0708	14.14	-14.170	0755	15.08	-0.190	0802	16.02	0.960
0568	11,34	2.100	0615	12.28	-2.500	0662	13.22	-7.330	0709	14,16	-0.470	0756	15.10	-21.020	0803	16.04	-10.950
0569	11.36	-1.860	0616	12.30	26.600	0663	13.24	8.620	0710	14.18	16.030	0757	15.12	-26.950	0804	16.06	8.190
0570	11.38	-9.340	0617	12.32	16.920	0664	13.26	7.370	0711	14.20	-10.860	0758	15.14	-10.960	0805	16.08	10.140
0571	11.40	-7.390	0618	12.34	-12.010	0665	13.28	6.490	0712	14.22	-12.070	0759	15.16	-12.560	0806	16.10	10.020
0572	11.42	-0.200	0619	12.36	-6.950	0666	13.30	7.740	0713	14.24	11.880	0760	15.18	0.820	0807	16.12	30.730
0573	11.44	4.540	0620	12.38	8.640	0667	13.32	10.880	0714	14.26	3.620	0761	15.20	12.670	0808	16.14	28.170
0574	11.46	-10.240	0621	12.40	15.230	0668	13.34	8.490	0715	14.28	-16.800	0762	15.22	-11.730	0809	16.16	12.700
0575	11.48	2.920	0622	12.42	6.640	0669	13.36	-13.080	0716	14.30	-0.340	0763	15.24	-7.600	0810	16.18	8.400
0576	11.50	14.660	0623	12.44	-9.010	0670	13.38	-21.970	0717	14.32	20.140	0764	15.26	6.620	0811	16.20	-10.010
0577	11.52	3.240	0624	12.46	0.890	0671	13.40	-11.450	0718	14.34	3.520	0765	15.28	-8.040	0812	16.22	-25,950
0578 0579	11.54	8.920	0625	12.48	2.330	0672	13.42	-6.840	0719	14.36	-8,530	0766	15,30	-13.750	0813	16.24	-10.880
0579	11.56 11.58	13.930 7.360	0626 0627	12.50 12.52	-8.540 -5.660	0673 0674	13.44	-1.660	0720 0721	14.38	-1.480	0767	15.32	-15.240	0814	16.26	-4.680
0581	11.58	-5.900	0627	12.54	-5.00U 3.920	0675	13.46 13.48	-0.550 6.090	0721	14.40	3.600	0768	15.34	-18.720	0815	16.28	-23.760
0582	11.62	-5.900 -15.350	0629	12.54	12.680	0676	13.48	19,730	0722	14.42	0.230	0769 0770	15.36	-14.290	0816	16.30	-36.270
0583	11.64	-15.550 -9.690	0630	12.58	9.460	0677	13.52	6.450	0724	14.44 14.46	9.130 9.710	0770	15.38 15.40	-18.580 -4.590	0817 0818	16.32 16.34	-28.900 16.560
0584	11.66	2.690	0631	12.50	7.080	0678	13.54	-13.950	0725	14,48	-6.520	0772	15.42	2.080	0819	16.36	-16.560 -11.580
0585	11.68	1.190	0632	12.62	15.930	0679	13.56	-15.270	0726	14.50	-4.450	0772	15.42	-15.240	0819	16.38	-15.000
0586	11.70	-5.610	0633	12.64	-2.270	0680	13.58	-7.890	0727	14.52	6.780	0774	15.46	9.010	0821	16.40	9.700
0587	11.72	-13.560	0634	12.66	-7.780	0681	13.60	0.590	0728	14.54	11.450	0775	15.48	24.070	0822	16.42	21,190
0588	11.74	-15.090	0635	12.68	7.140	0682	13.62	-7.250	0729	14.56	8.550	0776	15.50	-1.970	0823	16.44	-7.380
0589	11.76	-0.550	0636	12.70	-9.060	0683	13.64	-8.200	0730	14,58	-1,200	0777	15.52	-14.500	0824	16.46	-20.980
0590	11.78	14.680	0637	12.72	-20.680	0684	13.66	3.080	0731	14.60	-1.830	0778	15.54	7.640	0825	16.48	-33.850
0591	11.80	15.650	0638	12.74	-13.380	0685	13.68	2.910	0732	14.62	7.400	0779	15.56	26.730	0826	16.50	-21.340
0592	11.82	16.870	0639	12.76	0.280	0686	13.70	-4.100	0733	14.64	6.880	0780	15.58	-1.380	0827	16.52	-7.480
0593	11.84	4.820	0640	12.78	13.240	0687	13.72	3.630	0734	14.66	-14.980	0781	15.60	-13.860	0828	16.54	-7.540
0594	11.86	-7.890	0641	12.80	1.490	0688	13.74	21,900	0735	14.68	-14.490	0782	15.62	11.770	0829	16.56	-0.520
0595	11.88	-3.720	0642	12.82	-4.960	0689	13.76	2.380	0736	14.70	6.070	0783	15.64	10.500	0830	16.58	-7.770
0596	11.90	0.890	0643	12.84	12.220	0690	13.78	-20.510	0737	14.72	1.280	0784	15.66	-2.040	0831	16.60	-8.520
0597	11.92	3.910	0644	12.86	9.690	0691	13.80	-7.410	0738	14.74	-5.950	0785	15.68	-0.180	0832	16.62	-2.620
0598	11.94	0.740	0645	12.88	-3.860	0692	13.82	3.020	0739	14.76	-12.440	0786	15.70	-10.710	0833	16.64	1.880
0599	11.96	-8.400	0546	12.90	6.420	0693	13.84	-1.470	0740	14.78	-11.110	0787	15.72	-7.070	0834	16.66	13.180
0600	11.98	-6.470	0647	12.92	0.890	0694	13.86	1.940	0741	14.80	3.720	0788	15.74	12.280	0835	16.68	26.740
0601	12.00	8.090	0648	12.94	-14.380	0695	13.88	-2.570	0742	14.82	-6,880	0789	15.76	-7.370	0836	16.70	25.840
0602	12.02	6.030	0649	12.96	-4.990	0696	13.90	-14.530	0743	14.84	-7.320	0790	15.78	-6.490	0837	16.72	15.830
0603	12.04	7.110	0650	12.98	-4.960 3.770	0697	13.92	-10.790	0744	14.86	19.230	0791	15.80	12.970	0838	16.74	3.880
0604	12.06	15.100	0651	13.00	-3.770	0698	13.94	1.190	0745	14.88	-1.710	0792	15.82	8.140	0839	16.76	-10.750
0605 0606	12.08 12.10	4,210 -15,700	0652 0653	13.02 13.04	-0.970	0699 0700	13.96	9.810	0746 0747	14.90	-9.570	0793	15.84	8.040	0840	16.78	-2.390
0607	12.10	-15.700 -23.130	0654	13.04	-2.140 11.250	0701	13.98 14.00	-0.110 -22.090	0748	14.92	13.300	0794	15.86	7.700	0841	16.80	3.840
0607	12.12	-23.130 4.990	0655	13.08	9.680	0701	14.00	-22.090 -12.710	0748	14.94 14.96	-2.300 -0.470	0795 0796	15.88 15.90	6.360 14.440	0842	16.82	-3.240
0609	12.14	7.420	0656	13.10	-1.140	0702	14.02	5.630	0749	14.98	-0.470 30.440	0798	15.90	16.840	0843 0844	16.84 16.86	11.400 2.770
0610	12.18	-21.560	0657	13.12	5.530	0703	14.04	2.420	0751	15.00	8.460	0797	15.92	6.180	0844 0845	16.86	-16.560
0611	12.20	-19.570	0658	13.14	0.100	0705	14.08	9.950	0752	15.02	-28,140	0799	15.96	5.510	0845	16.88	-22.710
COTT	14.20	,T2'2\A	1050	13.14	0.100	0,00	14.00	3.330	0/52	13.02	-Z0,14U	0/99	13,30	2.210	U545	10.90	-22./10

N°	Tiempo	Value	N°	Tiempo	Value	N.	Tiempo	Value	N°	Tiempo	Value	N°	Tiempo	Value	N°	Tiempo	Value
.,	(seg.)	(m/seg2)		(seg.)	(m/seg2)		(seg.)	(m/seg2)		(seg.)	(m/seg2)		(seg.)	(m/seg2)		(seg.)	(m/seg2)
0847	16.92	-11.370	0894	17.86	7.340	0941	18.80	6.200	0988	19.74	171.400	1035	20.68	-211.380	1082	21.62	-70.560
0848	16.94	7.600	0895	17.88	-53.160	0942	18.82	63.350	0989	19.76	27.410	1036	20.70	-89.300	1083	21.64	-102.910
0849	16.96	15.400	0896	17.90	-20.4 9 0	0943	18.84	60.120	0990	19.78	-104.740	1037	20.72	-4.530	1084	21.66	44.720
0850	16.98	12.940	0897	17.92	58.380	0944	18.86	-34.220	0991	19.80	-70.460	1038	20.74	19.260	1085	21.68	119.770
0851	17.00	5.780	0898	17.94	78.380	0945	18.88	-40.360	0992	19.82	-44.150	1039	20.76	18.710	1086	21.70	-25.810
0852	17.02	8.790	0899	17.96	58.340	0946	18.90	70.280	0993	19.84	-105.280	1040	20.78	4.310	1087	21.72	-107.420
0853	17.04	6.790	0900	17.98	61.350	0947	18.92	76.310	0994	19.86	-93.670	1041	20.80	131.560	1088	21.74	-3.940
0854	17.06	8.200	0901	18.00	58.050	0948	18.94	36.290	0995	19.88	-52.170	1042	20.82	243.910	1089	21.76	67.530
0855	17.08	-7.440	0902	18.02	26.850	0949	18.96	54.680	0996	19.90	-80.110	1043	20.84	126.290	1090	21.78	67.790
0856	17.10	-18.410	0903	18.04	-10.160	0950	18.98	32.060	0997	19.92	-93.340	1044	20.86	-70.550	1091	21.80	74.210
0857	17.12	-16.170	0904	18.06	-23.880	0951	19.00	-17.200	0998	19.94	-89.300	1045	20.88	-100.220	1092	21.82	81.7 9 0
0858	17.14	-11.640	0905	18.08	-18.200	0952	19.02	14.250	0999	19.96	-60.960	1046	20.90	-3.180	1093	21.84	84.380
0859	17.16	0.610	0906	18.10	-23.830	0953	19.04	106.310	1000	19.98	11.240	1047	20.92	49.260	1094	21.86	-38.010
0860 0861	17.18 17.20	-4.210 0.210	0907 0908	18.12	-28.670 -43.120	0954 0955	19.06	117,260	1001 1002	20.00	32.910	1048 1049	20.94	37.200	1095 1096	21.88	-89.590
0862	17.20 17.22	0.210 5.560	0908	18.14 18.16	-43.120 -69.600	0956	19.08 19.10	-63.960 -152.490	1002	20.02 20.04	4.910 40.040	1049	20.96 20.98	-54.540 -153.820	1096	21.90 21.92	45.550 26,560
0863	17.24	-3.680	0910	18.18	-58.620	0957	19.12	-132.490 -73.670	1003	20.04	65.740	1050	21.00	-76.530	1097	21.92	-79.560
0864	17.24	-12.450	0911	18.20	-21.260	0958	19.14	-73.070	1004	20.08	9,620	1051	21.00	128.640	1099	21.94	-121.220
0865	17.28	-17.760	0912	18.22	-4.300	0959	19.14	-10.730	1005	20.10	-35.870	1052	21.02	231.760	1100	21.98	-121.220 -96.740
0866	17.20	-0.070	0913	18.24	-16.210	0960	19.18	-20.420	1007	20.12	49.030	1054	21.04	153.000	1101	22.00	51.600
0867	17.32	8.320	0914	18.26	0.240	0961	19.20	-30.220	1008	20.14	201.030	1055	21.08	12.350	1102	22.02	80.930
0868	17.34	-5.830	0915	18.28	41.190	0962	19.22	-33.080	1009	20.16	180.460	1056	21.10	-52.620	1103	22.04	-54.220
0869	17.36	-18.690	0916	18.30	26.770	0963	19.24	4.110	1010	20.18	10.710	1057	21.12	-15.810	1104	22.06	-51.600
0870	17.38	-24,170	0917	18.32	-12,440	0964	19.26	22,210	1011	20.20	-4.740	1058	21.14	53.290	1105	22.08	49.380
0871	17,40	-31.870	0918	18.34	-25.070	0965	19.28	-9.160	1012	20.22	64.020	1059	21.16	54.430	1106	22.10	11.430
0872	17.42	-36.950	0919	18.36	-27.080	0966	19.30	-6.260	1013	20.24	-33.490	1060	21.18	-34.230	1107	22.12	-81.540
0873	17.44	-24.290	0920	18.38	-9.210	0967	19.32	-20.250	1014	20.26	-179.790	1061	21.20	-101.800	1108	22.14	-80,430
0874	17,46	-18.180	0921	18.40	4.360	0968	19.34	-117.820	1015	20.28	-269.340	1062	21.22	-68.300	1109	22.16	-48.730
0875	17.48	-14.370	0922	18.42	-12.010	0969	19.36	-154.640	1016	20.30	-241.040	1063	21.24	-61.200	1110	22.18	-2.060
0876	17.50	-16.750	0923	18.44	-2.710	0970	19.38	-84.190	1017	20.32	-94.040	1064	21.26	-45.410	1111	22.20	77.130
0877	17.52	-39.030	0924	18.46	31.720	0971	19.40	14.000	1018	20.34	-51.070	1065	21.28	55.210	1112	22.22	110.880
0878	17.54	-14.270	0925	18.48	64.440	0972	19.42	121.790	1019	20.36	-150.160	1066	21.30	118.460	1113	22.24	33.220
0879	17.56	6.210	0926	18.50	58.920	0973	19.44	186.430	1020	20.38	-161.210	1067	21.32	-84.250	1114	22.26	-4.090
0880	17.58	-29.550	0927	18.52	28.890	0974	19.46	195.510	1021	20.40	-20.880	1068	21.34	-249.180	1115	22.28	56.070
0881	17.60	-35.080	0928	18.54	20.230	0975	19.48	107.610	1022	20.42	149.270	1069	21.36	-7.770	1116	22.30	9.170
0882	17.62	-22.230	0929	18.56	14.580	0976	19.50	-50.680	1023	20.44	212.040	1070	21.38	246.780	1117	22.32	-44.230
0883	17.64	-21.420	0930	18.58	-25.740	0977	19.52	-65.170	1024	20.46	171.490	1071	21.40	173.050	1118	22.34	16.910
0884	17.66	-14.810	0931	18.60	-56.840	0978	19.54	7.290	1025	20.48	112.970	1072	21.42	-2.090	1119	22.36	78.040
0885	17.68	-1.820	0932	18.62	-25.160	0979	19.56	57.680	1026	20.50	45.190	1073	21.44	-21.010	1120	22.38	71.220
0886	17.70	-3.540	0933	18.64	5.880	0980	19.58	82.590	1027	20.52	4.530	1074	21.46	68.600	1121	22.40	-65.550
0887	17.72	-0.130	0934	18.66	-24.730	0981	19.60	52.260	1028	20.54	71.830	1075	21.48	162.240	1122	22.42	-113.280
0888	17.74	2.520	0935	18.68	-86.960	0982	19.62	-38.130	1029	20.56	38.730	1076	21.50	139.000	1123	22.44	49.770
0889	17.76	-5.250	0936	18.70	-84.300	0983	19.64	-103.740	1030	20.58	-32.170	1077	21.52	-15.100	1124	22.46	145.260
0890	17.78	7.590	0937	18.72	-5.920	0984	19.66	-60.060	1031	20,60	35.130	1078	21.54	-83.310	1125	22.48	84.570
0891	17.80	33.690	0938	18.74	79.570	0985	19.68	-30.240	1032	20.62	50.180	1079	21.56	25.330	1126	22.50	22.070
0892	17.82	64.400	0939	18.76	63.040	0986	19.70	15.340	1033	20.64	-28.450	1080	21.58	117.970	1127	22.52	-35.080
0893	17.84	69,210	0940	18.78	-5.720	0987	19.72	131.640	1034	20.66	-161.880	1081	21.60	59.690	1128	22.54	-36.360

•

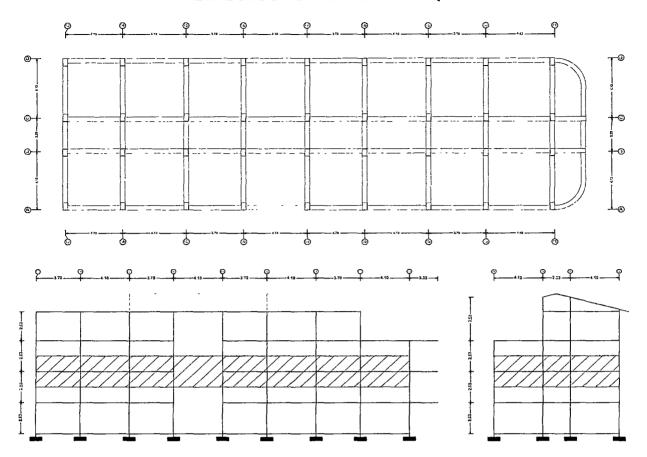
	Tiempo	Value		Tiempo	Value		Tiempo	Value		Tiempo	Value		Tiempo	Value		Tiempo	Value
N,	(seg.)	(m/seg2)	N°	(seg.)	(m/seg2)	N'	(seg.)	(m/seg2)	N°	(seg.)	(m/seg2)	N°	(seg.)	(m/seg2)	N°	(seg.)	(m/seg2)
1129	22,56	27.850	1176	23.50	-196.730	1223	24.44	70.710	1270	25.38	-4.060	1317	26.32	-35.110	1364	27.26	1.190
1130	22.58	49.710	1177	23.52	-242.090	1224	24.46	111.010	1271	25.40	-43.370	1318	26.34	46.730	1365	27.28	-9.360
1131	22.60	68.430	1178	23.54	-83.360	1225	24.48	28.760	1272	25.42	-58.260	1319	26.36	46.860	1366	27.30	-10.440
1132	22,62	76.700	1179	23.56	94.200	1226	24.50	-25,820	1273	25.44	4.580	1320	26.38	-41.570	1367	27.32	25.450
1133	22,64	36.510	1180	23.58	36.560	1227	24.52	10.580	1274	25.46	26.790	1321	26.40	-3.510	1368	27.34	74.420
1134	22.66	39.210	1181	23.60	-98.130	1228	24.54	-2.930	1275	25.48	-17.630	1322	26.42	42.890	1369	27.36	40.100
1135	22.68	-3.150	1182	23.62	-13.160	1229	24.56	-27.410	1276	25.50	-47.970	1323	26.44	29.550	1370	27.38	16.400
1136	22.70	-106.350	1183	23.64	-2.520	1230	24.58	25.090	1277	25.52	0.160	1324	26.46	13.830	1371	27.40	0.480
1137	22.72	-61.740	1184	23.66	-64.480	1231	24.60	13.060	1278	25.54	25.330	1325	26.48	-20.180	1372	27.42	-22.770
1138	22.74	29.080	1185	23.68	21.790	1232	24.62	-36.630	1279	25.56	-32.670	1326	26.50	-12.860	1373	27.44	1.890
1139	22.76	-31.230	1186	23.70	160.480	1233	24.64	-20.160	1280	25.58	-47.120	1327	26.52	22.830	1374	27.46	0.930
1140	22.78	-171.060	1187	23.72	116.360	1234	24.66	-16.970	1281	25.60	-20.300	1328	26.54	42.330	1375	27.48	0.030
1141	22.80	-176.000	1188	23.74	-16.360	1235	24.68	-22.880 13.130	1282	25.62	-11.290	1329	26.56	18.540	1376	27.50	7.910
1142 1143	22.82 22.84	-9.040 69.600	1189 1190	23.76 23.78	16.670 143.430	1236 1237	24.70 24.72	-12.120 -27.140	1283 1284	25.64 25.66	-2.410 48.390	1330 1331	26.58 26.60	-30.810 -8.530	1377 1378	27.52 27.54	-20.460 -24.540
1145	22.84	68.690 -39.810	1190	23.78	99.100	1237	24.72	-27.140 -41.620	1284	25.68	103.080	1331	26.62	-8.030 55.210	1379	27.56	-24.540 20.670
1145	22.88	-45.600	1192	23.82	-60.420	1239	24.76	-47.800	1286	25.70	37.800	1333	26.64	33.630	1380	27.58	11.290
1146	22.90	33,940	1193	23.84	-72.630	1240	24.78	-65,190	1287	25.72	-43.410	1334	26,66	-36.780	1381	27.60	-27.330
1147	22.92	-30.800	1194	23.86	56.280	1241	24.80	-48.590	1288	25.74	-29.730	1335	26.68	-41.030	1382	27.62	-59,420
1148	22.94	-85.160	1195	23.88	59.960	1242	24.82	33.980	1289	25.76	2.980	1336	26.70	-16.180	1383	27.64	-73.340
1149	22.96	14.090	1196	23.90	-50.380	1243	24.84	85,910	1290	25.78	29.580	1337	26.72	10.790	1384	27.66	-12.330
1150	22.98	126.960	1197	23.92	-81.420	1244	24.86	15.600	1291	25.80	32.540	1338	26.74	8.310	1385	27.68	28.790
1151	23.00	98.880	1198	23.94	-83.940	1245	24.88	-61.790	1292	25.82	8.860	1339	26.76	-28.330	1386	27.70	-7.830
1152	23.02	-14.880	1199	23.96	-38.850	1246	24.90	35.390	1293	25.84	-6.720	1340	26.78	-16.570	1387	27.72	-5.390
1153	23.04	-72,280	1200	23.98	60.120	1247	24.92	21.430	1294	25.86	9.550	1341	26.80	21.110	1388	27.74	13.390
1154	23.06	-104.800	1201	24.00	50.490	1248	24.94	-65.210	1295	25.88	5.980	1342	26.82	31.930	1389	27.76	-27.710
1155	23.08	-65.670	1202	24.02	-35.060	1249	24.96	30.400	1296	25.90	-45.210	1343	26.84	-1.640	1390	27.78	-38.440
1156	23.10	46.360	1203	24.04	-36.220	1250	24.98	19.610	1297	25.92	-46.810	1344	26.86	-38.870	1391	27.80	-28.720
1157	23.12	154.950	1204	24.06	26.950	1251	25.00	-35.830	1298	25.94	4.010	1345	26.88	-51.060	1392	27.82	-11.600
1158	23.14	-13.390	1205	24.08	50.080	1252	25.02	1.850	1299	25.96	35.410	1346	26.90	-44.040	1393	27.84	25.210
1159	23.16	-154.610	1206	24.10	21.010	1253	25.04	-1.040	1300	25.98	36.410	1347	26.92	-1.830	1394	27.86	24.430
1160	23.18	-9.310	1207 1208	24.12	-11.050	1254 1255	25.06	-28.400	1301	26.00	-5.800	1348	26.94	36.850 6.440	1395 1396	27.88	11.430
1161 1162	23.20 23.22	147.700 4.030	1208	24.14 24.16	-20.790 -52.430	1255	25.08 25.10	-4.350 54.570	1302 1303	26.02 26.04	-70.220 -46.010	1349 1350	26.96 26.98	-24.160	1390	27.90 27.92	31.030 38.480
1162	23.24	-75.280	1210	24.16	-32.430 -31.580	1257	25.10 25.12	76.080	1303	26.04	-46.010 84.070	1350	27.00	-24.160 -36.680	1397	27.92 27.94	38.480 35.780
1164	23.24	29.420	1210	24.16	20.590	1258	25.12	6.450	1304	26.08	96.060	1351	27.00	-30.680 -28.320	1399	27.94	48.340
1165	23.28	36.060	1212	24.22	-2.970	1259	25.14	-49.680	1306	26.10	-27.800	1353	27.02	27.270	1400	27.98	5.130
1166	23.30	68,320	1213	24.24	-39.680	1260	25.18	-25,450	1307	26.12	-48,380	1354	27.04	42.700	1401	28.00	-83,380
1167	23.32	-12.180	1214	24.26	-10.110	1261	25.20	16.000	1308	26.14	-4.730	1355	27.08	26.580	1402	28.02	-82.730
1168	23.34	-105.550	1215	24.28	35.870	1262	25.22	88.320	1309	26.16	-15.510	1356	27.10	62.420	1403	28.04	-0.320
1169	23.36	-35.390	1216	24.30	8.350	1263	25.24	68.380	1310	26.18	-8.710	1357	27.12	66.450	1404	28.06	11.630
1170	23.38	12.780	1217	24.32	-63.060	1264	25.26	-0.070	1311	26.20	19.160	1358	27.14	-18.910	1405	28.08	-35.620
1171	23.40	5.380	1218	24.34	-75.090	1265	25.28	-11.960	1312	26.22	4.880	1359	27.16	-96.650	1406	28.10	-23.400
1172	23.42	65.730	1219	24.36	12.180	1266	25.30	-11.720	1313	26.24	-20.250	1360	27,18	-88.200	1407	28.12	-25.410
1173	23.44	45.290	1220	24.38	44.750	1267	25.32	27.300	1314	26.26	-28.660	1361	27.20	-34.840	1408	28.14	-36.740
1174	23.46	17.980	1221	24.40	-51.330	1268	25.34	54.260	1315	26.28	-12.630	1362	27.22	17.960	1409	28.16	-7.920
1175	23.48	-7.660	1222	24.42	-52.210	1269	25.36	22.900	1316	_26.30	-30.500	1363	27.24	28.480	1410	28.18	-19.170

Nº I	Tiempo	Value	N°	Tiempo	Value	N°	Tiempo	Value	N°	Tiempo	Value	N.	Tiempo	Value	N°	Tiempo	Value
14	(seg.)	(m/seg2)	14	(seg.)	(m/seg2)	~	(seg.)	(m/seg2)		(seg.)	(m/seg2)		(seg.)	(m/seg2)		(seg.)	(m/seg2
1411	28.20	-4.480	1458	29.14	-15.230	1505	30.08	47.080	1552	31.02	-13.940	1599	31.96	33.900	1646	32.90	-56.810
1412	28.22	60.450	1459	29.16	5.860	1506	30.10	29.660	1553	31.04	-20.870	1600	31.98	42.630	1647	32.92	-42.470
1413	28.24	65.780	1460	29.18	6.050	1507	30.12	-23.230	1554	31.06	-36.410	1601	32.00	4.820	1648	32.94	-15.200
1414	28.26	-12.680	1461	29.20	-51.960	1508	30.14	6.700	1555	31.08	-28.490	1602	32.02	-12.170	1649	32.96	8.700
1415	28.28	-42.720	1462	29.22	-48.560	1509	30.16	6.280	1556	31.10	16.360	1603	32.04	17.100	1650	32.98	13.030
1416	28.30	-26.090	1463	29.24	-2.740	1510	30.18	-18.080	1557	31.12	15.220	1604	32.06	10.310	1651	33.00	2.690
1417	28.32	0.160	1464	29.26	14.480	1511	30.20	2.130	1558	31.14	1.960	1605	32.08	-33.800	1652	33.02	7.700
1418	28.34	43.180	1465	29.28	36.100	1512	30.22	-13.380	1559	31.16	25.870	1606	32.10	-44.720	1653	33.04	2.190
1419	28.36	29.330	1466	29.30	46.180	1513	30.24	-18.690	1560	31.18	-2.420	1607	32.12	-19.550	1654	33.06	-8.31
1420	28.38	-17.600	1467	29.32	-7.990	1514	30.26	8.860	1561	31.20	-29.320	1608	32.14	-19.830	1655	33.08	5.560
1421	28.40	9.630	1468	29.34	-33.600	1515	30.28	1.870	1562	31.22	-0.760	1609	32.16	-28.740	1656	33.10	26,76
1422	28.42	18.700	1469	29.36	-11.980	1516	30.30	-30.150	1563	31.24	4.720	1610	32.18	-9.350	1657	33.12	18.23
1423	28.44	-47.160	1470	29.38	-0.040	1517	30.32	-13.380	1564	31.26	21.830	1611	32.20	22.730	1658	33.14	1.910
1424	28.46	-70.520	1471	29.40	24.020	1518	30.34	17.220	1565	31.28	12.230	1612	32.22	26.360	1659	33.16	1.760
1425	28.48	-42.740	1472	29.42	24.210	1519	30.36	5.730	1566	31.30	-13.920	1613	32.24	-9.310	1660	33.18	-6.76
1426	28.50	-21.240	1473	29.44	-26.720	1520	30.38	-9.540	1567	31.32	17.830	1614	32.26	-7.350	1661	33.20	-16.67
1427	28.52	-2,020	1474	29.46	-28.750	1521	30.40	<i>-</i> 7.610	1568	31.34	29.690	1615	32.28	14.580	1662	33.22	-6.31
1428	28.54	9.370	1475	29.48	20.130	1522	30.42	-0.240	1569	31.36	13.780	1616	32.30	1.150	1663	33.24	19.03
1429	28.56	12.910	1476	29.50	13.820	1523	30.44	1.610	1570	31.38	30.750	1617	32.32	8.700	1664	33.26	30.06
1430	28.58	-7.770	1477	29.52	0.830	1524	30.46	-13.370	1571	31.40	20.480	1618	32.34	19.450	1665	33.28	1.24
1431	28.60	-28.350	1478	29.54	-1.790	1525	30.48	-29.500	1572	31.42	-20.710	1619	32.36	2.970	1666	33.30	-9.62
1432	28.62	10.620	1479	29.56	-10.850	1526	30.50	-50.830	1573	31.44	-13.440	1620	32.38	-14.620	1667	33.32	-9.76
1433	28.64	31.100	1480	29.58	4.990	1527	30.52	-42.420	1574	31.46	1.580	1621	32.40	-22.690	1668	33.34	-1.59
1434	28.66	20.800	1481	29.60	6.830	1528	30.54	7.480	1575	31.48	3.550	1622	32.42	10.040	1669	33.36	26.62
1435	28.68	29.740	1482	29.62	5.560	1529	30.56	12,280	1576	31.50	-6.080	1623	32,44	19.550	1670	33.38	19.08
1436	28.70	28.360	1483	29.64	40.860	1530	30.58	-11.190	1577	31.52	-19.480	1624	32.46	-20.000	1671	33.40	-11.27
1437	28.72	36.120	1484	29.66	39.330	1531	30.60	2.300	1578	31.54	-0.920	1625	32.48	-2.510	1672	33.42	-18.4
1438	28.74	39.970	1485	29.68	-2.810	1532	30.62	12.860	1579	31.56	2.220	1626	32.50	35.710	1673	33.44	-9.64
1439	28.76	6.000	1486	29.70	-13.230	1533	30.64	-5.790	1580	31.58	-9.140	1627	32.52	23.950	1674	33.46	-18.04
1440	28.78	-38.370	1487	29.72	-9.190	1534	30.66	7.740	1581	31.60	7.860	1628	32.54	-3.460	1675	33.48	-9 .60
1441	28.80	-50.210	1488	29.74	-10.910	1535	30.68	42.700	1582	31.62	19.780	1629	32.56	-10.840	1676	33.50	12.75
1442	28.82	-5.480	1489	29.76	-19.620	1536	30.70	28.980	1583	31.64	25.110	1630	32.58	11.850	1677	33.52	8.24
1443	28.84	-3.790	1490	29.78	-24.240	1537	30.72	-16.320	1584	31.66	37.250	1631	32.60	16.540	1678	33.54	5.72
1444	28.86	-43.630	1491	29.80	-3.290	1538	30.74	-3.880	1585	31.68	23.880	1632	32.62	-10.320	1679	33.56	18.78
1445	28.88	-28.030	1492	29.82	5.530	1539	30.76	10.640	1586	31.70	-14.970	1633	32.64	-31.700	1680	33.58	8.79
1446	28.90	-15.100	1493	29.84	-17.210	1540	30.78	-6.620	1587	31.72	-39.820	1634	32.66	-21.200	1681	33.60	-2.40
1447	28.92	-7.990	1494	29.86	-41.320	1541	30.80	1.240	1588	31.74	-13.610	1635	32.68	7.140	1682	33.62	3.31
1448	28.94	22.380	1495	29.88	-34.070	1542	30.82	4.800	1589	31.76	28.730	1636	32.70	32.570	1683	33.64	1.20
1449	28.96	11.370	1496	29.90	-23.300	1543	30.84	-9.950	1590	31.78	34.450	1637	32.72	27.780	1684	33.66	4.15
1450	28.98	-31.100	1497	29.92	-17.390	1544	30.86	-23,230	1591	31.80	22.470	1638	32.74	6.880	1685	33.68	11.16
1451	29.00	-16.930	1498	29.94	-15.370	1545	30.88	-10.350	1592	31.82	0.330	1639	32.76	16.740	1686	33.70	5.79
1452	29.02	22.880	1499	29.96	-44.330	1546	30.90	-8.690	1593	31.84	-15.510	1640	32.78	36.080	1687	33.72	8.92
1453	29.04	21.490	1500	29.98	-19.960	1547	30.92	-4.710	1594	31.86	14.270	1641	32.80	24.310	1688	33.74	12.95
1454	29.06	21,010	1501	30.00	13.010	1548	30.94	25.450	1595	31.88	21.100	1642	32.82	-10.770	1689	33.76	2.59
1455	29.08	37.920	1502	30.02	5.020	1549	30.96	20.740	1596	31.90	-2.330	1643	32.84	-15.000	1690	33.78	0.36
1456	29.10	31.030	1503	30.04	15.230	1550	30.98	2.850	1597	31.92	-2.190	1644	32.86	1.420	1691	33.80	5.670
1457	29.12	8.310	1504	30.06	25.820	1551	31.00	-3.310	1598	31.94	9.890	1645	32.88	-25.130	1692	33.82	2.17

, ,	Tlempo	Value	, , , , , , , , , , , , , , , , , , ,	Tiempo	Value	,	Tiempo	Value	,	Tiempo	Value	,	Tiempo	Value	,	Tiempo	Value
N°	(seg.)	(m/seg2)	N*	(seg.)	(m/seg2)	N°	(seg.)	(m/seg2)	N°	(seg.)	(m/seg2)	N*	(Seg.)	(m/seg2)	N°	(seg.)	(m/seg2)
1693	33.84	-26.590	1740	34.78	22.240	1787	35.72	-10.010	1834	36.66	-6.900	1881	37.60	7.290	1928	38.54	-5.070
1694	33.86	-43.420	1741	34.80	27.760	1788	35.74	-18.720	1835	36.68	5.850	1882	37.62	-1.450	1929	38.56	7.020
1695	33.88	-18.930	1742	34.82	-2.730	1789	35.76	-5.900	1836	36.70	-1.340	1883	37.64	-15.510	1930	38.58	17.080
1696	33.90	-9.650	1743	34.84	-9.130	1790	35.78	11.110	1837	36.72	-3.650	1884	37.66	-0.370	1931	38.60	7.420
1697	33.92	-6.020	1744	34.86	-7.000	1791	35.80	12.040	1838	36.74	14.360	1885	37.68	9.780	1932	38. 6 2	-20.860
1698	33.94	19.760	1745	34.88	-21.370	1792	35.82	-2.010	1839	36.76	18.750	1886	37.70	1.090	1933	38.64	-24.660
1699	33.96	25.480	1746	34.90	-7.800	1793	35.84	-2.820	1840	36.78	7.080	1887	37.7 2	3.850	1934	38.66	-8.840
1700	33.98	13.480	1747	34.92	7.450	1794	35.86	18.040	1841	36.80	5.730	1888	37.74	15.080	1935	38.68	-13.960
1701	34.00	2.620	1748	34.94	1.970	1795	35.88	25.690	1842	36.82	9.230	1889	37.76	8.680	1936	38.70	-35.710
1702	34.02	9.300	1749	34.96	-9.980	1796	35.90	12.690	1843	36.84	3.440	1890	37.78	-9.340	1937	38.72	-38.930
1703	34.04	15.690	1750	34.98	-1.620	1797	35.92	12.970	1844	36.86	-5.070	1891	37.80	-13.840	1938	38.74	-19.650
1704	34.06	7.930	1751	35.00	20.440	1798	35.94	15.680	1845	36.88	-9.550	1892	37.82	-15.720	1939	38.76	-4.140
1705	34.08	6.710	1752	35.02	9.870	1799	35.96	-2.600	1846	36.90	-6.460	1893	37.84	-20.140	1940	38.78	1.300
1706	34.10	1.200	1753	35.04	-11.170	1800	35.98	-15.340	1847	36.92	-1.930	1894	37.86	-14.630	1941	38.80	5.330
1707 1708	34.12 34.14	-13.200	1754 1755	35.06 35.08	2.320	1801 1802	36.00 36.02	-4.630 -3.060	1848 1849	36.94 36.96	-4.800 -8.050	1895 1896	37.88 37.90	-10.530 -4,780	1942 1943	38.82 38.84	6.220
1709	34.14	-8.810 12.360	1756	35.10	18.180 7.160	1803	36.04	-12,250	1850	36.98	-3.890	1897	37.92	0.710	1943	38.86	3.290 -5.360
1710	34.18	18.860	1757	35.12	-5.750	1804	36.04	-12.230	1851	37.00	-8.640	1898	37.94	-11,380	1945	38.88	-3.360 -7.350
1711	34.20	9.190	1758	35.12	15.380	1805	36.08	-16.100	1852	37.02	-5.720	1899	37.96	-8.640	1946	38.90	9.070
1712	34.22	6.120	1759	35.16	3.390	1806	36.10	-12.610	1853	37.04	-17.580	1900	37.98	1.050	1947	38.92	2.740
1713	34.24	13.020	1760	35.18	-13.600	1807	36.12	-8.690	1854	37.06	-32.560	1901	38.00	-15,110	1948	38.94	-10.860
1714	34.26	5.890	1761	35.20	19.730	1808	36.14	2.380	1855	37.08	-4.770	1902	38.02	-12.030	1949	38.96	8.150
1715	34.28	-12.940	1762	35.22	18.370	1809	36.16	14.870	1856	37.10	19.490	1903	38.04	-7.630	1950	38.98	25,720
1716	34.30	-17.320	1763	35.24	-1.790	1810	36.18	23.150	1857	37.12	12.990	1904	38.06	-23.790	1951	39.00	16.460
1717	34.32	4.610	1764	35.26	11.540	1811	36.20	10.340	1858	37.14	3.680	1905	38.08	-4,440	1952	39.02	15.190
1718	34.34	12.890	1765	35.28	16.770	1812	36.22	2.600	1859	37.16	0.950	1906	38.10	17.980	1953	39.04	19.020
1719	34.36	10.880	1766	35.30	12.500	1813	36.24	-13.220	1860	37.18	1.530	1907	38.12	-3.050	1954	39.06	3.960
1720	34.38	6.760	1767	35.32	5.710	1814	36.26	-21.170	1861	37.20	4.050	1908	38.14	-12.560	1955	39.08	-15.920
1721	34.40	-3.080	1768	35.34	-1.730	1815	36.28	5.860	1862	37.22	7.790	1909	38.16	20.560	1956	39.10	-16.020
1722	34.42	1.110	1769	35.36	5.810	1816	36.30	14.350	1863	37.24	2.370	1910	38.18	37.390	1957	39.12	-0.060
1723	34.44	-3.740	1770	35.38	-3.240	1817	36.32	-11.620	1864	37.26	-11.380	1911	38.20	4.510	1958	39.14	2.360
1724	34.46	4.570	1771	35.40	3.420	1818	36.34	-26.380	1865	37.28	-12.010	1912	38.22	-4.360	1959	39.16	3.510
1725	34.48	6.150	1772	35.42	10.360	1819	36.36	-2.580	1866	37.30	-15.520	1913	38.24	9.280	1960	39.18	15.680
1726	34.50	-11.410	1773	35,44	-13.530	1820	36.38	14.340	1867	37.32	-2.300	1914	38.26	-3.120	1961	39.20	8.510
1727 1728	34.52 34.54	-8.550 11.830	1774 1775	35.46	-14.020 2.540	1821 1822	36.40	11.270 7.740	1868 1869	37.34 37.36	-2.540 -22,490	1915 1916	38.28	-16.800 -15.950	1962 1963	39.22 i 39.24 i	-3.340 3.400
1728 1729	34.54	11.820 16.500	1776	35.48 35.50	2.540 15.930	1822 1823	36.42 36.44	9.750	1869	37.36 37.38	-22.490 -10.910	1916 1917	38.30 38.32	1.000	1963 1964	39.24	3.400 13.260
1730	34.58	-21.260	1777	35.52	18.530	1824	36.46	10.220	1871	37.40	6.270	1917	38.34	9,210	1964	39.26	15.560 15.560
1731	34.60	-21.260 -37.550	1778	35.54	5.140	1825	36.48	-3.730	1872	37.40	2.560	1919	38.36	8,780	1965	39.30	6.710
1732	34.62	-11.820	1779	35.56	3.160	1826	36.50	-11.090	1873	37.42	8.010	1920	38.38	24.260	1967	39.32	0.270
1733	34.64	21,440	1780	35.58	16.050	1827	36.52	2.730	1874	37.46	21.450	1921	38.40	21.020	1968	39.34	-4.200
1734	34.66	3.840	1781	35.60	6.820	1828	36.54	14.530	1875	37.48	-0.420	1922	38.42	7.860	1969	39.36	-18.250
1735	34.68	-11.470	1782	35.62	-20.640	1829	36.56	11.000	1876	37.50	-18.130	1923	38.44	15.540	1970	39.38	-16.580
1736	34.70	15.980	1783	35.64	-18.420	1830	36.58	6.840	1877	37.52	0.000	1924	38.46	20.950	1971	39.40	8.010
1737	34.72	9.500	1784	35.66	-3.630	1831	36.60	6.010	1878	37.54	5.940	1925	38.48	23.140	1972	39.42	19.510
1738	34.74	1.330	1785	35.68	-8.560	1832	36.62	2.640	1879	37.56	-8.410	1926	38.50	12.180	1973	39.44	6.270
1739	34.76	6.860	1786	35.70	-4.160	1833	36.64	-7.830	1880	37.58	-5.120	1927	38.52	-6.770	1974	39.46	-16.710

	Tiempo	Value		Tiempo	Value	· · · · · ·	Tiempo	Value	T	Tiempo	Value		Tiempo	Value		Tiempo	Value
N°	(seg.)	(m/seg2)	N°	(seg.)	(m/seg2)	N°	(seg.)	(m/seg2)	N.	(seg.)	(m/seg2)	N.	(seg.)	(m/seg2)	N.	(seg.)	(m/seg2)
1975	39.48	-22,900	2022	40.42	4.780	2069	41.36	-0.050	2116	42,30	0.570	2163	43.24	3.400	2210	44.18	-12,330
1976	39.50	-7.550	2023	40.44	-1.120	2070	41.38	-8.570	2117	42.32	-11.000	2164	43.26	10.460	2211	44.20	-17.140
1977	39.52	0.240	2024	40.46	-8.650	2071	41.40	2.850	2118	42.34	-5.970	2165	43.28	14.260	2212	44.22	-2.750
1978	39.54	0.660	2025	40.48	-16.670	2072	41.42	17.350	2119	42.36	-5.990	2166	43.30	8.350	2213	44.24	12.660
1979	39.56	7,680	2026	40.50	-3.750	2073	41.44	-2.050	2120	42.38	-8.280	2167	43.32	-15.130	2214	44.26	1.000
1980	39.58	11.140	2027	40.52	10.190	2074	41.46	-25.050	2121	42.40	-5.620	2168	43,34	-16.140	2215	44.28	-8.810
1981	39.60	0.180	2028	40.54	0.220	2075	41.48	-17.320	2122	42.42	-7.080	2169	43.36	3.040	2216	44.30	-4.140
1982	39.62	-16.620	2029	40.56	11.730	2076	41.50	-7.160	2123	42.44	-6.090	2170	43.38	18.160	2217	44.32	-3.110
1983	39.64	-12.560	2030	40.58	22.760	2077	41.52	-12.760	2124	42.46	4.330	2171	43.40	7.350	2218	44.34	-7.760
1984	39.66	-6.690	2031	40.60	22.240	2078	41.54	-13.020	2125	42.48	18.090	2172	43.42	-6.370	2219	44.36	-10.240
1985	39.68	-13.360	2032	40.62	16.200	2079	41.56	0.460	2126	42.50	22.050	2173	43.44	-7.560	2220	44.38	-3,440
1986	39.70	-2.790	2033	40.64	-3.450	2080	41.58	12.330	2127	42.52	11.040	2174	43.46	-13.940	2221	44.40	1.280
1987	39.72	6.690	2034	40.66	-11.040	2081	41.60	13.750	2128	42.54	9.820	2175	43.48	-19.730	2222	44.42	-7.810
1988	39.74	-2.270	2035	40.68	-7.560	2082	41.62	12.400	2129	42.56	23.520	2176	43.50	-13.470	2223	44.44	-22,720
1989	39.76	2.200	2036	40.70	-7.760	2083	41.64	11.880	2130	42.58	30.050	2177	43.52	2.510	2224 2225	44.46	-29,360
1990 1991	39.78 39.80	8.560 -3.380	2037 2038	40.72 40.74	-6.840 -12.060	2084 2085	41.66 41.68	13.160 16.840	2131 2132	42.60 42.62	14.300 6.140	2178 2179	43.54 43.56	9.960 3.970	2225	44.48 44.50	-16.150 5.990
1992	39.82	-3.360 -12.600	2038	40.74	-12.420	2086	41.70	16.230	2132	42.64	10.050	2179	43.58	0.710	2220	44.52	10,750
1993	39.84	-4.810	2040	40.78	-7.980	2087	41.72	5.700	2133	42.66	-1.890	2180	43.60	7.200	2227	44.54	-12.230
1994	39.86	10.180	2041	40.80	-7.970	2088	41.74	-6.360	2135	42.68	-23.030	2182	43.62	1.470	2229	44.56	-19.970
1995	39.88	20.090	2042	40.82	-2.110	2089	41.76	-6.060	2136	42.70	-16.830	2183	43.64	-4.570	2230	44.58	-1.320
1996	39.90	13.230	2043	40.84	-1.750	2090	41.78	2.080	2137	42.72	2.710	2184	43.66	-5.210	2231	44.60	14.180
1997	39.92	-1.140	2044	40.86	-7.500	2091	41.80	-5.460	2138	42.74	-4.230	2185	43.68	2.470	2232	44.62	2.870
1998	39.94	-1.080	2045	40.88	-13.870	2092	41.82	-15.110	2139	42.76	0.650	2186	43.70	5.060	2233	44.64	-5.490
1999	39.96	7.200	2046	40.90	-16.630	2093	41.84	-2,490	2140	42,78	6.800	2187	43.72	-9.710	2234	44.66	-3.510
2000	39.98	15.200	2047	40.92	-5.060	2094	41.86	7.480	2141	42.80	7.960	2188	43.74	-9.690	2235	44.68	-7.800
2001	40.00	7.820	2048	40.94	2.920	2095	41.88	3.930	2142	42.82	13.650	2189	43.76	4.510	2236	44.70	-3.870
2002	40.02	7.910	2049	40.96	9.400	2096	41.90	-4.260	2143	42.84	7.480	2190	43.78	15.390	2237	44.72	0.300
2003	40.04	24.190	2050	40.98	14.200	2097	41.92	-6.370	2144	42.86	8.080	2191	43.80	18.090	2238	44.74	0.350
2004	40.06	20.280	2051	41.00	4.250	2098	41.94	2.090	2145	42.88	0.260	2192	43.82	11.340	2239	44.76	6.020
2005	40.08	5.810	2052	41.02	1.440	2099	41.96	2.740	2146	42.90	-11.110	2193	43.84	10.470	2240	44.78	7.950
2006	40.10	-5.580	2053	41.04	12.870	2100	41.98	12.030	2147	42.92	-6.960	2194	43.86	0.880	2241	44.80	1.720
2007	40.12	-13.770	2054	41.06	0.230	2101	42.00	20.740	2148	42.94	1.300	2195	43.88	-8.270	2242	44.82	7.850
2008	40.14	-10.860	2055	41.08	-12.500	2102	42.02	3.930	2149	42.96	8.690	2196	43.90	1.000	2243	44.84	8.710
2009	40.16	-12.600	2056	41.10	0.880	2103	42.04	-12.120	2150	42.98	7.680	2197	43.92	9.200	2244	44.86	2.530
2010	40.18	-22.170	2057	41.12	-1.680	2104	42.06	-14.000	2151	43.00	-5.100	2198	43.94	8.280	2245	44.88	6.890
2011	40.20	-20.320	2058	41.14	-14.220	2105	42,08	-17.040	2152	43.02	-11.260	2199	43.96	1.760	2246	44.90	12.560
2012	40.22	-3.200	2059	41.16	-13.160	2106	42.10	-26.780	2153	43.04	-10.760	2200	43.98	-1.120	2247	44.92	7.560
2013	40.24	3.830	2060	41.18	-4.810 1.010	2107	42.12	-15.280 2.630	2154	43.06	-16.180	2201	44.00	0.220	2248	44.94	-5.010
2014	40.26	-7.370	2061	41.20	-1.910	2108 2109	42.14	3.670	2155	43.08	-7.180 4.340	2202	44.02	5.710	2249	44.96	-1.320
2015 2016	40.28 40.30	-8.490 -2.670	2062 2063	41.22 41.24	-4.410 -3.320	2109	42.16 42.18	-3.860 -7.070	2156 2157	43.10 43.12	4.340 -4.160	2203 2204	44.04 44.06	9.630 6.150	2250 2251	44.98 45.00	14.460 27.950
2016	40.30	-2,670 -8,400	2063	41.24 41.26	-3.320 -7.820	2110	42.18 42.20	-7.070 5.390	215/	43.12	-4.160 -9.860	2204	44.06	6.150 3.530	2251	45.00 45.02	27.950 17.950
2017	40.32	-8.400 -23.760	2065	41.28	-7.820 -13.310	2111	42.20	-1.090	2158	43.14	-6.270	2205	44.10	7.130	2252	45.02 45.04	-9.810
2019	40.36	-16.000	2066	41.20	-10.840	2113	42.24	-6.470	2160	43.18	1,460	2207	44.12	11.280	2254	45.04 45.06	-12.920
2020	40.38	-4.010	2067	41.32	-1.940	2114	42.26	4.810	2161	43.20	5.970	2208	44.14	3.620	2255	45.08	3.620
2021	40.40	-3.580	2068	41.34	4.550	2115	42.28	11.720	2162	43.22	-1.650	2209	44.16	-7.280	2256	45.10	-2.130
2021	40.40	4000	000	72.57	-7,3,70	النفقسا	72.20	231164	2102	73.66	2.020	A203	77.20	,,200	22,0	42.10	-2.130

	Tiempo	Value		Tiempo	Value		Tiempo	Value		Tiempo	Value	1 7	Tiempo	Value	, 	Tiempo	Value
N°	(seg.)	(m/seg2)	N°	(seg.)	(m/seg2)	N°	(seg.)	(m/seg2)	N.	(seg.)	(m/seg2)	N°	(seg.)	(m/seg2)	N°	(seg.)	(m/seg2)
2257	45.12	-19.710	2304	46.06	1.700	2351	47.00	-2.650	2398	47.94	-1.660	2445	48.88	3.890	2492	49.82	5.550
2258	45.14	-21.820	2305	46.08	-6.070	2352	47.02	5.680	2399	47.96	2.880	2446	48.90	-0.340	2493	49.84	-0.010
2259	45.16	-15.860	2306	46.10	-10.980	2353	47.04	-0.550	2400	47.98	6.750	2447	48.92	-0.190	2494	49.86	12.470
2260	45.18	-4.750	2307	46.12	-12.820	2354	47.06	-6.960	2401	48.00	0.490	2448	48.94	2.260	2495	49.88	17.580
2261	45.20	-0.860	2308	46.14	-18.280	2355	47.08	-0.880	2402	48.02	-7.910	2449	48.96	2.160	2496	49.90	4.920
2262	45.22	-11.330	2309	45.16	-7.060	2356	47.10	2.480	2403	48.04	-3.670	2450	48.98	-0.330	2497	49.92	-6.960
2263	45.24	-4.400	2310	46.18	2.790	2357	47.12	-8.350	2404	48.06	2.330	2451	49.00	-3.580	2498	49.94	-6.890
2264	45.26	0.170	2311	46.20	7.620	2358	47.14	-10.920	2405	48.08	0.850	2452	49.02	-0.550	2499	49.96	-5.720
2265	45.28	-12.480	2312	46.22	6.800	2359	47.16	-3.920	2406	48.10	-4.970	2453	49.04	10.060	2500	49.98	3.680
2266	45.30	-13.290	2313	46.24	18.250	2360	47.18	-3.230	2407	48.12	-4.970	2454	49.06	10.910	2501	50.00	10.990
2267	45.32	-4.500	2314	46.26	24.440	2361	47.20	-5.390	2408	48.14	3.230	2455	49.08	2.900	2502	50.02	-7.420
2268	45.34	11.430	2315	46.28	6.070	2362	47.22	-6.610	2409	48.16	17.930	2456	49.10	1.080	2503	50.04	-24.320
2269	45.36	22.320	2316	46.30	0.960	2363	47.24	-5.050	2410	48.18	21.980	2457	49.12	6.720	2504	50.06	-13.840
2270 2271	45.38	9.700	2317	46.32	-1.530	2364	47.26	-5.250	2411	48.20	11.170	2458	49.14	15.730	2505	50.08	-6.440
2271	45.40 45.42	4.850	2318 2319	46.34 46.36	-12.570	2365 2366	47.28	-10.070	2412 2413	48.22	2.740	2459	49.16	12.170	2506	50.10	-5.310
2273	45.44	10.480 6.050	2319	46.38	-16.590 -13.140	2367	47.30 47.32	-3.640 8.900	2413	48.24 48.26	-1.540 -3.560	2460	49.18	3.390	2507 2508	50.12	-2.800
2274	45.46	10.100	2321	46.40	-7.480	2368	47.32 47.34	9.670	2414	48.28	-5.150	2461 2462	49.20 49.22	15.340 17.020	2508 2509	50.14 50.16	-6.950 -1.920
2275	45.48	12.640	2322	46,42	7.570	2369	47.36	11.360	2415	48.30	-3.130 -8.110	2462	49.22	-1,660	2510	50.18	1.420
2276	45.50	0.090	2323	46.44	13.210	2370	47.38	19.410	2417	48.32	-11.060	2464	49.26	-14.050	2510 2511	50.20	-7.150
2277	45.52	-6.140	2324	46.46	-7.230	2371	47.40	26.390	2418	48.34	-6.760	2465	49.28	-12,030	2512	50.22	-7.150 -3.100
2278	45.54	10,850	2325	46.48	-14.820	2372	47.42	21.510	2419	48.36	-4,500	2466	49.30	-5,500	2513	50.24	3.680
2279	45.56	10.310	2326	46.50	-12,790	2373	47.44	6.400	2420	48.38	-3,450	2467	49.32	-4.350	2514	50.24	-3.850
2280	45.58	-5,830	2327	46.52	-3.270	2374	47.46	-5.470	2421	48.40	9.510	2468	49.34	-3,360	2515	50.28	-7.860
2281	45.60	-5.930	2328	46.54	10.220	2375	47.48	-11.220	2422	48.42	12.400	2469	49.36	-2,500	2516	50.30	-1.330
2282	45.62	3.990	2329	46.56	2.670	2376	47.50	-4.860	2423	48.44	3.850	2470	49.38	3.450	2517	50.32	5.150
2283	45.64	7.290	2330	46.58	4.110	2377	47.52	3.220	2424	48.46	0.690	2471	49.40	3.500	2518	50.34	5.930
2284	45.66	-1.740	2331	46.60	14.400	2378	47.54	4.950	2425	48.48	0.800	2472	49.42	-5.740	2519	50.36	9.030
2285	45.68	-3.770	2332	46.62	4.350	2379	47.56	6.730	2426	48.50	4.090	2473	49.44	-5.430	2520	50.38	1.360
2286	45.70	-2.890	2333	46.64	-8.120	2380	47.58	9.170	2427	48.52	5.750	2474	49.46	-2.700	2521	50.40	-7.430
2287	45.72	-9.780	2334	46.66	-2.330	2381	47.60	11.560	2428	48.54	5.490	2475	49.48	-5.640	2522	50.42	5.820
2288	45.74	-6.410	2335	46.68	3.960	2382	47.62	11.090	2429	48.56	7.600	2476	49.50	-8.230	2523	50.44	15.930
2289	45.76	7.420	2336	46.70	-4.250	2383	47.64	7.240	2430	48.58	8.960	2477	49.52	-4.040	2524	50.46	6.090
2290	45.78	7.090	2337	46.72	-11.450	2384	47.66	4.010	2431	48.60	17.620	2478	49.54	0.800	2525	50.48	-5.390
2291	45.80	-10.590	2338	46.74	-5.390	2385	47.68	0.590	2432	48.62	18.930	2479	49.56	0.740	2526	50.50	-6.960
2292	45.82	-8.820	2339	46.76	3.590	2386	47.70	3.970	2433	48.64	6.110	2480	49.58	-0.160	2527	50.52	-5.280
2293	45.84	-1.860	2340	46.78	8.380	2387	47.72	3.160	2434	48.66	2.380	2481	49.60	-5.230	2528	50.54	-8.630
2294	45.86	-12,240	2341	46.80	4.410	2388	47.74	-4.390 5.470	2435	48.68	6.600	2482	49.62	-10.840	2529	50.56	-15.250
2295 2296	45.88 45.90	-14.030	2342	46.82	0.440	2389	47.76	6.470	2436	48.70	14.890	2483	49.64	1.110	2530	50.58	-13.480
2296	45.90 45.92	-0.510 4.630	2343 2344	46.84 46.86	6.280 8.630	2390 2391	47.78 47.80	14.060 9.770	2437 2438	48.72 48.74	9.840	2484	49.66	2.750	2531	50.60	-5.120 0.310
2297	45.94 I	1.160	2344	46.88	1.430	2391	47.80	10.210	2438 2439	48.74 48.76	-2.890 1.610	2485 2486	49.68 49.70	-3.160 4.150	2532 2533	50.62 50.64	-9.210
2299	45.94 45.96	1.330	2345	46.88	-4.430	2392	47.82	13.000	2439	48.78 I	2.500	2486 2487	49.70	4.150 6.580	2533 2534	50.64 50.66	-15.040 -2.880
2300	45.98	-3,230	2347	46.92	-8.080	2394	47.84	9.600	2440	48.76	-2.650	2487	49.72	11.250	2534 2535	50.68	-2.880 9.450
2301	46.00	-7.380	2348	46.94	-2.880	2395	47.88	-3.240	2442	48.82	-9.370	2489	49.76	10.800	2536	50.70	6.620
2302	46.02	-10.020	2349	46.96	1.440	2396	47.90	-8.270	2443	48.84	-11,180	2490	49.78	7.740	2537	50.72	0.860
2303	46.04	-6.780	2350	46.98	-6.600	2397	47.92	-5.080	2444	48.86	0.190	2491	49.80	13.930	2538	50.74	2.910
				.0.00			-77.424			70.00	3.250		75.00	23.230	2330	30.74	マハカリ


	Tiempo	Value		Tlempo	Value		Tiempo	Value		Tiempo	Value		Tiempo	Value		Tiempo	Value
Ν°	(seg.)	(m/seg2)	N°	(seg.)	(m/seg2)	N,	(seg.)	(m/seg2)	N°	(seg.)	(m/seg2)	N.	(seg.)	(m/seg2)	N.	(seg.)	(m/seg2)
2539	50.76	2.080	2586	51.70	7.640	2633	52.64	1.970	2680	53.58	-1,460	2727	54.52	-14.260	2774	55.46	-3.760
2540	50.78	-3.360	2587	51.72	8.410	2634	52.66	9.080	2681	53.60	-6.980	2728	54.54	-12.720	2775	55.48	-2.900
2541	50.80	-4.990	2588	51.74	3.830	2635	52.68	7.290	2682	53.62	-11.220	2729	54.56	-7.660	2776	55.50	5.820
2542	50.82	0.420	2589	51.76	-2.430	2636	52.70	4.800	2683	53.64	-4.860	2730	54.58	2.430	2777	55.52	5.610
2543	50.84	2.130	2590	51.78	-2.700	2637	52.72	4.020	2684	53.66	-3.010	2731	54.60	5.250	2778	55.54	-1.420
2544	50.86	-5.480	2591	51.80	1.280	2638	52.74	-0.790	2685	53.68	-5.880	2732	54.62	0.380	2779	55.56	-0.320
2545	50.88	-6.970	2592	51.82	-4.760	2639	52.76	-10.220	2686	53.70	-6.940	2733	54.64	4.520	2780	55.58	6.730
2546	50.90	-2.700	2593	51.84	-1.620	2640	52.78	-10.770	2687	53.72	-1.540	2734	54.66	6.750	2781	55.60	6.200
2547	50.92	-0.160	2594	51.86	10.550	2641	52.80	-3.510	2688	53.74	2.970	2735	54.68	-6.270	2782	55.62	-0.220
2548	50.94	3,880	2595	51.88	1.200	2642	52.82	-4.310	2689	53.76	-1.250	2736	54.70	-11.580	2783	55.64	-4.840
2549	50.96	2.180	2596	51.90	-6.750	2643	52.84	-10.740	2690	53.78	4.470	2737	54.72	-4.690	2784	55.66	-1.000
2550	50.98	-1.870	2597	51.92	-2.580	2644	52.86	-12.510	2691	53.80	7.430	2738	54.74	4.280	2785	55.68	4.950
2551 2552	51.00 51.02	-1.880 F.060	2598 2599	51.94	-0.220	2645 2646	52.88	-8.870	2692 2693	53.82	-1.640	2739	54.76	7.370	2786	55.70	4.340
2553	51.02	5.060 10.220	2599	51.96 51.98	-0.730 -3.490	2646 2647	52.90 52.92	-0.030 7.620	2693 2694	53.84 53.86	-5.090 -0.710	2740 2741	54.78 54.80	6.060 12.030	2787 2788	55.72 55.74	1.880 -0.160
2554	51.04	8.730	2601	52.00	-2.440	2648	52.94	1.910	2695	53.88	6.680	2741	54.82	12.830	2789	55.76	-0.160 -2.350
2555	51.08	8.290	2602	52.02	0.760	2649	52.96	4.660	2696	53.90	7.530	2742	54.84	6.190	2769 2790	55.78	-2.350 -3,770
2556	51.10	2.710	2603	52.04	1.340	2650	52.98	10.750	2697	53.92	2.230	2744	54.86	2.220	2790 2791	55.80	-2.250
2557	51.12	0.800	2604	52.06	-4.160	2651	53.00	3.810	2698	53.94	3.590	2745	54.88	0.880	2792	55.82	0,800
2558	51.14	3.250	2605	52.08	-12.600	2652	53.02	-0.380	2699	53.96	2.680	2746	54.90	0.750	2793	55.84	3.360
2559	51.16	1,510	2606	52.10	-8.550	2653	53.04	-0.950	2700	53.98	-4.150	2747	54.92	3.910	2794	55.86	2.650
2560	51.18	-2.680	2607	52.12	5.690	2654	53.06	-0.330	2701	54.00	0.810	2748	54.94	0.720	2795	55.88	1.860
2561	51.20	-11.150	2608	52.14	2.210	2655	53.08	-7.190	2702	54.02	8.310	2749	54.96	-4.360	2796	55.90	7,100
2562	51.22	-9.820	2609	52.16	-3.590	2656	53.10	-8.810	2703	54.04	0.710	2750	54.98	-1.030	2797	55.92	8.620
2563	51.24	-4.530	2610	52.18	2.160	2657	53.12	-1.980	2704	54.06	-5.070	2751	55.00	4.340	2798	55.94	-3.080
2564	51.26	-7.530	2611	52.20	4.000	2658	53.14	-2.630	2705	54.08	5.030	2752	55.02	2.210	2799	55.96	-1.690
2565	51.28	-7.160	2612	52.22	5.200	2659	53.16	-0.350	2706	54.10	6.830	2753	55.04	-4.320	2800	55.98	4.800
2566	51.30	-3.000	2613	52.24	4.760	2660	53.18	2.700	2707	54.12	-2.090	2754	55.06	2.580	2801	56.00	0.800
2567	51.32	3.830	2614	52.26	-2.360	2661	53.20	-4.050	2708	54.14	-1.940	2755	55.08	7.180	2802	56.02	-3.130
2568	51.34	7.080	2615	52.28	0.900	2662	53.22	-1.450	2709	54.16	2.600	2756	55.10	-0.510	2803	56.04	-1.310
2569	51.36	5.640	2616	52.30	0.620	2663	53.24	-2.500	2710	54.18	-1.460	2757	55.12	-8.170	2804	56.06	-3.490
2570	51.38	-1.660	2617	52.32	-5.090	2664	53.26	-8.020	2711	54.20	-7.080	2758	55.14	-6.770	2805	56.08	-5.890
2571	51.40	-3.800	2618	52.34	-2.560	2665	53.28	-5.490	2712	54.22	-5.460	2759	55.16	1.400	2805	56.10	0.080
2572	51.42	-7.980	2619	52.36	5.060	2666	53.30	-0.580	2713	54.24	-1.420	2760	55.18	4.870	2807	56.12	0.280
2573	51.44	-4.900	2620	52.38	9.230	2667	53.32	-4.890	2714	54.26	6.510	2761	55.20	5.000	2808	56.14	-4.960
2574	51.46	0.340	2621	52.40	2.070	2668	53.34	-5.480 1.470	2715	54.28	-0.160	2762	55.22	5.220	2809	56.16	-9.390
2575 2576	51.48 51.50	-4.540 1.410	2622 2623	52.42 52.44	1.020 6.900	2669 2670	53.36 53.38	1.470 6.180	2716 2717	54.30 54.32	-7.360 -4.080	2763 2764	55.24	4.700 3.070	2810 2811	56.18	-12.190
2577	51.50	1.300	2624	52.44 52.46	3.150	2671	53.40	12.410	2717 2718	54.34 54.34	-4.080 0.960	2764	55.26 55.28	3.070 3.780	2811 2812	56.20 56.20	-1.930
2578	51.54	-6,930	2625	52.46 52.48	-4.460	2672	53.40	6.880	2718) 2719	54.34 54.36	7.800	2765 2766	55.28 55,30	3.780 4.890	2812 2813	56.22 56.24	8.510 6.800
2579	51.54	-13.820	2625	52.50	1.170	2673	53.42	-5.740	2719	54.38	7.430	2767	55.32	-0.780	2814	56.24) 56.26	2.870
2580	51.58	-16.920	2627	52.52	4.660	2674	53.44	-5.570	2721	54.40	3,990	2768	55.34	-6.460	2815	56.28	-2.650
2581	51.60	-7.510	2628	52.54	-4.900	2675	53.48	3.850	2722	54.42	-2.090	2769	55.36	-4.170	2815	56.30	-2.030 -4.720
2582	51.62	3.790	2629	52.56	-10.070	2676	53.50	-0,820	2723	54.44	-8.590	2770	55.38	-1.180	2817	56.32	-1.420
2583	51.64	6.870	2630	52.58	-0.220	2677	53.52	-3.230	2724	54.46	-11.670	2771	55.40	1.740	2818	56.34	2.240
2584	51.66	3.690	2631	52.60	3.390	2678	53.54	1.400	2725	54.48	-13.910	2772	55.42	7.080	2819	56.36	1.080
2585	51.68	3.140	2632	52.62	-3.020	2679	53.56	0.910	2726	54.50	-15.140	2773	55.44	5.040	2820	56.38	-2.150
										J-7.20		-,,,,		3,440	2020	30.30	

, ,	Tiempo	Value	,	Tiempo	Value		Tiempo	Value		Tiempo	Value		Tiempo	Value		Tiempo	Value
N.	(seg.)	(m/seg2)	N°	(seg.)	(m/seg2)	N"	(seg.)	(m/seg2)	N°	(seg.)	(m/seg2)	N.	(seg.)	(m/seg2)	N.	(seg.)	(m/seg2)
2821	56.40	-3.660	2868	57.34	-0.070	2916	58.30	1.920	2963	59.24	0.780	3010	60.18	1.740	3057	61.12	3.270
2822	56.42	-4.580	2869	57.36	6.700	2917	58.32	5.660	2964	59.26	2.950	3011	60.20	-4.330	3058	61.14	1.070
2823	56.44	-2.260	2870	57.38	2.130	2918	58.34	10.760	2965	59.28	0.370	3012	60.22	-4.510	3059	61.16	-2.380
2824	56.46	1.850	2871	57.40	-3.240	2919	58.36	5.230	2966	59.30	-3.400	3013	60.24	1.560	3060	61.18	-1.080
2825	56.48	4.170	2872	57,42	-1.560	2920	58.38	-2.230	2967	59.32	-4.710	3014	60.26	0.240	3061	61.20	-3.560
2826	56.50	5.490	2873	57.44	3.620	2921	58.40	-4.780	2968	59.34	-4.760	3015	60.28	-3.820	3062	61.22	-6.010
2827	56.52	7.130	2874	57.46	3.830	2922	58.42	-5.740	2969	59.36	-0.060	3016	60.30	3.870	3063	61.24	-6.170
2828	56.54	8.710	2875	57.48	-4.500	2923	58.44	-7.180	2970	59.38	0.330	3017	60.32	7.920	3064	61.26	-1.010
2829	56.56	9.850	2876	57,50	-8.710	2924	58.46	-8.110	2971	59.40	-1.610	3018	60.34	0.170	3065	61.28	3.610
2830	56.58	6.960	2877	57.52	-7 <i>.</i> 780	2925	58.48	-5.770	2972	59.42	4.080	3019	60.36	-2.810	3066	61.30	0.880
2831	56.60	-0.640	2878	57.54	-1.380	2926	58.50	-1.070	2973	59.44	7.910	3020	60.38	2.760	3067	61.32	-5.160
2832	56.62	-4.020	2879	57.56	0.420	2927	58.52	-3.980	2974	59.46	8.190	3021	60.40	0.610	3068	61.34	-2.130
2833	56.64	-0.230	2880	57.58	-9.650	2928	58.54	-9.390	2975	59.48	7.600	3022	60.42	-2.720	3069	61.36	3.460
2834	56.66	6.780	2881	57. 6 0	-9.470	2929	58.56	-8.760	2976	59.50	4.710	3023	60.44	4.890	3070	61.38	2.270
2835	56.68	3.240	2882	57.62	-3.000	2930	58.58	-7.100	2977	59.52	-0.460	3024	60.46	8.190	3071	61.40	5.290
2836	56.70	-3.260	2883	57.64	-3.860	2931	58.60	-3.990	2978	59.54	-6.650	3025	60.48	6.410	3072	61.42	9.530
2837	56.72	0.800	2884	57.66	-5.000	2932	58.62	0.830	2979	59.56	-7.450	3026	60.50	5.320	3073	61.44	9.480
2838	56.74	4.290	2885	57,68	-0.720	2933	58.64	6.270	2980	59.58	-1.580	3027	60.52	6,180	3074	61.46	8.410
2839	56.76	3.320	2886	57.70	1.950	2934	58.66	5.290	2981	59.60	-1.800	3028	60.54	10.440	3075	61.48	6.180
2840	56.78	-1.280	2887	57.72	-1.370	2935	58.68	1.680	2982	59.62	-5.380	3029	60.56	4.490	3076	61.50	-1.320
2841	56.80	-5.380	2888	57.74	2.010	2936	58.70	4.140	2983	59.64	-1.460	3030	60.58	-3.110	3077	61.52	-6.640 6.050
2842 2843	56.82 56.84	-4.540 0.730	2889 2890	57.76	2.710 -5.620	2937 2938	58.72 58.74	7.480 9.780	2984 2985	59.66 59.68	2.460 -0.480	3031 3032	60.60	0.130 -0.710	3078 3079	61.54 61.56	-6.050
2844	56.86	4,870	2891	57.78 57.80	-5.620 -9.980	2938	58.74 58.76	10.450	2985	59.70	-0.480	3032	60.62 60.64	-0.710 -5.310	3079	61.58	-4.140 -0.160
2845	56.88	0.230	2892	57.82	-9.600	2940	58.78	7.840	2987	59.72	-2.720	3033	60.66	-5.310 -6.340	3080	61.60	-0.160
2846	56.90	-5.460	2893	57.84	0.340	2940	58.80	3.990	2988	59.74	-1.470	3035	60.68	-7.240	3082	61.62	-5.300
2847	56.92	-9.680	2894	57.86	8.470	2942	58.82	2.490	2989	59.76	1.280	3036	60.70	-9.200	3083	61.64	-3.060
2848	56.94	-8.100	2895	57.88	6.150	2943	58.84	4.790	2990	59.78	1.990	3037	60.72	-7.840	3084	61.66	-0.200
2849	56.96	-8.040	2896	57.90	3.060	2944	58.86	8.210	2991	59.80	1.350	3038	60.74	-3.490	3085	61.68	-4,990
2850	56.98	-9.960	2897	57.92	2.120	2945	58.88	6.850	2992	59.82	-0.330	3039	60.76	0.450	3086	61.70	-11.170
2851	57.00	-4.750	2898	57.94	2.340	2946	58.90	0.600	2993	59.84	-1.980	3040	60.78	-0.290	3087	61.72	-13.850
2852	57.02	-1.610	2899	57.96	0.810	2947	58.92	-5,380	2994	59.86	-1.070	3041	60.80	-4.910	3088	61.74	-15.140
2853	57.04	-1.040	2900	57.98	-4.390	2948	58.94	-5.260	2995	59.88	1.550	3042	60.82	-6.810	3089	61.76	-8.830
2854	57.06	1.860	2901	58.00	-10.300	2949	58.96	-1.150	2996	59.90	2.650	3043	60.84	-5.260	3090	61.78	-9.470
2855	57.08	8.520	2902	58.02	-10.950	2950	58.98	-1.250	2997	59.92	1.480	3044	60.86	1.020	3091	61.80	-11.850
2856	57.10	15.680	2903	58.04	-8.080	2951	59.00	-4.270	2998	59.94	3.400	3045	60.88	7.850	3092	61.82	-2.780
2857	57.12	13.220	2904	58,06	-3.290	2952	59.02	-4,760	2999	59.96	4.790	3046	60.90	2.170	3093	61.84	1.530
2858	57.14	4.790	2905	58.08	2.570	2953	59.04	-3.410	3000	59.98	1.140	3047	60.92	-4.460	3094	61.86	1.860
2859	57.16	1.250	2906	58.10	4.020	2954	59.06	-2.180	3001	60.00	-0.130	3048	60.94	-3.920	3095	61.88	0.300
2860	57.18	0.600	2907	58.12	2.860	2955	59.08	-1.790	3002	60.02	2.100	3049	60.96	2.040	3096	61.90	-2.360
2861	57.20	-0.080	2908	58.14	1.970	2956	59.10	-3.470	3003	60,04	3.060	3050	60.98	4.520	3097	61.92	0.130
2862	57.22	-0.750	2909	58.16	0.950	2957	59.12	-4,430	3004	60.06	1.210	3051	61.00	5.760	3098	61.94	5.050
2863	57.24	2.430	2910	58.18	-0.040	2958	59.14	-1.460	3005	60.08	-1.590	3052	61.02	5.460	3099	61.96	5.520
2864	57.26	5.690	2911	58.20	-3.110	2959	59.16	2.470	3006	60.10	-6.000	3053	61.04	-0.210	3100	61.98	2.890
2865	57.28	1.280	2912	58.22	-1.500	2960	59.18	1.780	3007	60.12	-10.320	3054	61.06	-2.630	3101	62.00	0.030
2866	57.30	-3.430	2913	58.24	8.360	2961	59.20	-1.720	3008	60.14	-4.480	3055	61.08	-3.710	3102	62.02	-0.890
2867	57.32	-4.940	2914	58.26	8.980	2962	59.22	-2.110	3009	60.16	3.240	3056	61.10	-1.760	3103	62.04	1.360

	Tiempo	Value		Tiempo	Value	,	Tiempo	Value		Tiempo	Value
N,	(seg.)	(m/seg2)	N°	(seg.)	(m/seg2)	N°	(seg.)	(m/seg2)	N,	(seg.)	(m/seg2)
3104	62.06	3.700	3151	63.00	-0.560	3198	63.94	0.330	3245	64.88	-5.700
3105	62.08	2.440	3152	63.02	-1.630	3199	63.96	-3.050	3246	64.90	-3.100
3106	62.10	-1.020	3153	63.04	-3.700	3200	63.98	0.080	3247	64.92	-2.550
3107	62.12	-3.170	3154	63.06	-5.080	3201	64.00	1.610	3248	64.94	-1.790
3108	62.14	1.490	3155	63.08	-0.700	3202	64.02	0.000	3249	64.96	0.170
3109	62.16	6.940	3156	63.10	4.890	3203	64.04	-1.670	3250	64.98	1.760
3110	62.18	2.070	3157	63.12	1.230	3204	64.06	1.240	3251	65.00	1.380
3111	62.20	-1.650	3158	63.14	-3.590	3205	64.08	1.740	3252	65.02	-0.220
3112	62.22	3.010	3159	63.16	-0.150	3206	64.10	-4.750	3253	65.04	-0.710
3113	62.24	3.770	3160	63.18	7.600	3207	64.12	-6,480	3254	65.06	-0.810
3114	62.26	-0.500	3161	63.20	10.720	3208	64.14	-3.140	3255	65.08	-2.290
3115	62.28	-2.130	3162	63.22	4.160	3209	64.16	-0.600	3256	65.10	-3.520
3116	62.30	-0.980	3163	63.24	-2.190	3210	64.18	0.460	3257	65.12	-3.130
3117	62.32	0.280	3164	63.26	1.430	3211	64.20	1.250	3258	65.14	-2.290
3118	62.34	-0.450	3165	63.28	3.560	3212	64.22	4.050	3259	65.16	-1.110
3119	62.36	-1.650	3166	63.30	-0.990	3213	64.24	6.630	3260	65.18	0.470
3120	62.38	1.310	3167	63.32	-3.920	3214	64.26	4.960	3261	65.20	-0.100
3121	62.40	0.430	3168	63.34	1.590	3215	64.28	3.040	3262	65.22	-2.830
3122	62.42	-2.400	3169	63.36	8.170	3216	64.30	5.380	3263	65.24	-3.800
3123	62.44	-0.390	3170	63.38	1.180	3217	64.32	3.360	3264	65.26	-2.910
3124	62.46	0.610	3171	63.40	-8.490	3218	64.34	-0.290	3265	65.28	-2.110
3125	62.48	0.250	3172	63.42	-6.470	3219	64.36	-0.130	3266	65.30	-1.150
3126	62.50	0.460	3173	63.44	-0.090	3220	64.38	0.640	3267	65.32	-2.120
3127	62.52	1.220	3174	63.46	5.140	3221	64.40	3.080	3268	65.34	-5.920
3128 3129	62.54	2.240	3175	63.48	7.670	3222	64.42	5.990	3269	65.36	-5.410
3129	62.56 62.58	4.880 8.350	3176 3177	63.50 63.52	7.450 0.590	3223 3224	64.44 64.46	5.920 2.710	3270 3271	65.38 65,40	-0.300 4.920
3131	62.50	11.090	3178	63.54	-5.060	3225	64.48	2.710	3271	65.40	7.750
3132	62.62	5.960	3178	63.56	-2.360	3225	64.50	4.550	3273	65.44	3.240
3133	62.64	1.340	3180	63.58	1.830	3227	64.52	6.010	3274	65,46	-0,430
3134	62.66	4.760	3180	63.60	3.540	3228	64.54	1.520	3275	65.48	2.380
3135	62.68	4.660	3182	63.62	0.400	3229	64.56	1.950	3276	65.50	4,110
3136	62.70	-0.360	3183	63.64	-2.170	3230	64.58	6.180	3277	65.52	0.290
3137	62.72	-2.420	3184	63.66	-0.630	3231	64.60	5.060	3278	65.54	-4.190
3138	62.74	0.200	3185	63.68	1.630	3232	64.62	2.850	3279	65.56	-4.160
3139	62.76	4.750	3186	63.70	0.070	3233	64.64	1.430	3280	65.58	-2.280
3140	62.78	7.960	3187	63.72	-2.920	3234	64.66	2.880	3281	65.60	0.310
3141	62.80	6.420	3188	63.74	-1.600	3235	64.68	5.950			
3142	62.82	3.500	3189	63.76	-2.530	3236	64.70	3.130	l		
3143	62.84	3.790	3190	63.78	-5.170	3237	64.72	-2.010		ļ	
3144	62.86	6.170	3191	63.80	-2.060	3238	64.74	-0.890			
3145	62.88	7.380	3192	63.82	0.770	3239	64.76	-0.170	i i		
3146	62.90	4.190	3193	63.84	-2.750	3240	64.78	-4.430		ì	
3147	62.92	0.390	3194	63.86	-4.790	3241	64.80	-6.850		j	
3148	62.94	-0.340	3195	63.88	0.140	3242	64.82	-3.370			
3149	62.96	-0.280	3196	63.90	6.840	3243	64.84	-2.320			
3150	62.98	-0.440	3197	63.92	7.110	3244	64.86	-5.940	L		

CALCULOS

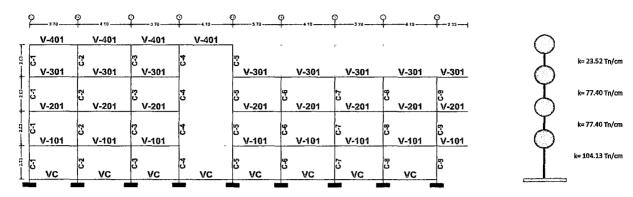
METRADO DE CARGAS VERTICALES - BLOQUE 02

VIGAS LONGITUDINALES									
EJE	B (m)	H (m)							
Α	0.30	0.40							
В	0.30	0.40							
С	0.30	0.40							
_ D	0.30	0.40							

COLUMNAS									
TIPO	B (m)	D (m)							
C-1	0.30	0.50							
C-2	0.30	0.50							
C-3	0.30	0.50							

VIGA	S TRANSVERS	ALES
EJE	B (m)	H (m)
13	0.30	0.40
14	0.30	0.40
15	0.30	0.40
16	0.30	0.40
17	0.30	0.40
18	0.30	0.40
19	0.30	0.40
20	0.30	0.40
21	0.30	0.40
21'	0.30	0.40

METRADO DE CARGAS VERTICALES


	PRIMER PISO	289.43	Tn
	AREA TECHADA	268.35	m²
⇒	PESO DE LOSA	80.51	Tn
→	VIGAS	58.78	Tn
	EJE A -A	8.68	
	EJE B - B	8.87	
	EJE C - C	8.87	
	EJE D - D	9.77	
	EJE 13 - 21	22.58	
⇒	COLUMNAS	41.47	Tn
	C-1	4.61	
	C-2	18.43	
	C-3	18.43	
⇒	PESO TABIQUERIA	48.30	Tn
⇒	PESO ACABADO	26.84	Tn
⇒	PESO POR S/C	33.54	Tn

	SEGUNDO PISO	284.25	Tn
	AREA TECHADA	268.35	m²
⇒	PESO DE LOSA	80.51	Tn
→	VIGAS	58.78	Tn
	EJE A -A	8.68	
	EJE B - B	8.87	
	EJE C - C	8.87	
	EJE D - D	9.77	
	EJE 13 - 21	22.58	
→	COLUMNAS	36.29	Tn
	C-1	4.03	
	C-2	16.13	
[]	C-3	16.13	
→	PESO TABIQUERIA	48.30	Tn
→	PESO ACABADO	26.84	Tn
→	PESO POR S/C	33.54	Tn

METRADO DE CARGAS VERTICALES

	TERCER PISO	280.47	Tn
	AREA TECHADA	268.35	m²
→	PESO DE LOSA	80.51	Tn
→	VIGAS	58.78	Tn
	EJE A -A	8.68	
	EJE B - B	8.87	
	EJE C - C	8.87	
	EJE D - D	9.77	
	EJE 13 - 21	22.58	
⇒	COLUMNAS	32.51	Tn
	C-1	2.81	
ļ	C-2	14.15	
	C-3	15.55	
⇒	PESO TABIQUERIA	48.30	Tn
→	PESO ACABADO	26.84	Tn
→	PESO POR S/C	33.54	Tn

	CUARTO PISO	125.27	Tn
	AREA TECHADA	193.28	m²
⇒	PESO DE LOSA	57.98	Tn
⇒	VIGAS	36. 42	Tn
	EJE A -A	2.07	
	EJE B - B	2.07	
	EJE C - C	3.60	
	EJE D - D	3.60	
	EJE 13 - 17	25.07	
→	COLUMNAS	21.20	Tn
	C-1	1.08	
	C-2	7.02	
}	C-3	13.10	
→	PESO POR S/C	9.66	Tn

PORTICO A- A

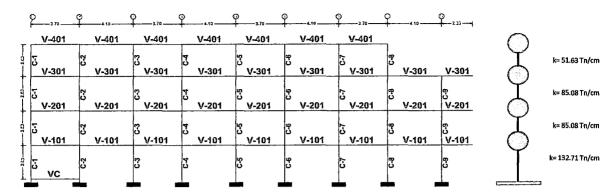
E = 210 Tn/cm2

X-X				
TRAMO	L (cm)			
13-14	370			
14-15	410			
15-16	370			
16-17	410			
17-18	370			
18-19	410			
19-20	370			
20-21	410			
21-21'	235			

	CUADRO DE COLUMNAS					
TIPO	B (cm)	H (cm)	I (cm4)			
C-1	30	50	312500			
C-2	30	50	312500			
C-3	30	50	312500			
C-4	30	50	312500			
C-5	30	50	312500			
C-6	30	50	312500			
C-7	30	50	312500			
C-8	30	50	312500			
C-9	30	50	312500			

CUADRO DE VIGAS						
TIPO	B (cm)	H (cm)	1 (cm4)			
VC	30	50	312500			
V-101	30	40	160000			
V-201	30	40	160000			
V-301	30	40	160000			
V-401	30	20	20000			

Z -Z			
PISO	H (cm)		
1er PISO	280		
2do PISO	280		
3er PISO	280		
4to PISO	260		


CALCULO DE RIGIDECES RELATIVAS

1ER PISO		2DO	PISO	3RO	PISO	410	PISO		
TIPO	1 (cm4)	L (cm)	K						
C-1	312500	280	1116.07	280	1116.07	280	1116.07	260	1201.92
C-2	312500	280	1116.07	280	1116.07	280	1116.07	260	1201.92
C-3	312500	280	1116.07	280	1116.07	280	1116.07	260	1201.92
C-4	312500	280	1116.07	280	1116.07	280	1116.07	260	1201.92
C-5	312500	280	1116.07	280	1116.07	280	1116.07	260	1201.92
C-6	312500	280	1116.07	280	1116.07	280	1116.07	260	1201.92
C-7	312500	280	1116.07	280	1116.07	280	1116.07	260	1201.92
C-8	312500	280	1116.07	280	1116.07	280	1116.07	260	1201.92
C-9	312500	280	1116.07	280	1116.07	280	1116.07	260	1201.92

	1		VC .		101		201		301		/-401
TRAMO	LONG. (cm)		К	I (cm4)	K	i (cm4)	K	l (cm4)	К	I (cm4)	K
13-14	370	312500	844.59	160000	432.43	160000	432,43	160000	432.43	20000	54.05
14-15	410	312500	762.20	160000	390.24	160000	390.24	160000	390.24	20000	48.78
15-16	370	312500	844.59	160000	432.43	160000	432.43	160000	432.43	20000	54.05
16-17	410	312500	762.20	160000	0.00	160000	0.00	160000	0.00	20000	48.78
17-18	370	312500	844.59	160000	432.43	160000	432.43	160000	432.43	20000	54.05
18-19	410	312500	762.20	160000	390.24	160000	390.24	160000	390.24	20000	48.78
19-20	370	312500	844.59	160000	432.43	160000	432.43	160000	432.43	20000	54.05
20-21	410	312500	762.20	160000	390.24	160000	390.24	160000	390.24	20000	48.78
21-21'	235	312500		160000	680.85	160000	680.85	160000	680.85	20000	85.11

ı

						•
	TIPO	Ŕ	a	Kemp.	Kel(Tn/cm)	1
	C-1	0.57	0.22	35,87	7.98	
	C-2	1,09	0.35	35.87	12.64	
. 0	C-3	1.09	0.35	35.87	12.64	
. 5	C-4	0.91	0.31	35.87	11.25	
PRIMER PISO	C-5	0.91	0.31	35.87	11.25	
≩	C-6	1,09	0.35	35.87	12.64	
_ =	C-7	1.09	0.35	35.87	12.64	
	C-8	1.09	0.35	35.87	12.64	
	C-9	0.82	0.29	35.87	10.44	
	C-1	0,39	0.16	35.87	5.82	
	C-2	0.74	0.27	35.87	9.66	
SEGUNDO PISO	∬ C-3	0.74	0.27	35.87	9.66	
-	C-4	0.39	0.16	35.87	5.82	
ğ	C-5	0,39	0.16	35.87	5.82	
3	C-6	0.74	0.27	35.87	9.66	
ä	C-7	0.74	0.27	35.87	9.66	
	C-8	0.74	0.27	35.87	9.66	
	C-9	0.96	0.32	35.87	11.63	
	C-1	0.39	0.16	35,87	5.82	
	C-2	0.74	0.27	35.87	9.66	
Ö	C-3	0.74	0.27	35.87	9.66	
3	C-4	0.39	0.16	35.87	5.82	
TERCER PISO	C-5	0.39	0.16	35.87	5.82	
£	C-6	0.74	0.27	35.87	9.66	
_	C-7	0.74	0.27	35.87	9.66	
	C-8	0,74	0.27	35.87	9.66	
	C-9	0.96	0.32	35.87	11.63	
CUARTO PISO	C-1	0,20	0.09	44.81	4.12	
. 🖺	C-2	0.39	0.16	44.81	7.23	
. ₩	C-3	0,39	0.16	44.81	7.23	
₹	C-4	0.22	0.10	44.81	4.49	
, 5	C-5	0.02	0.01	44.81	0.45	

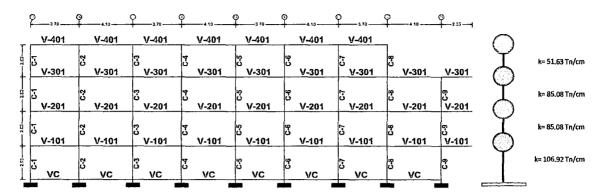
PORTICO B-B; C-C

E = 210 Tn/cm2

Х	- X
TRAMO	L (cm)
13-14	370
14-15	410
15-16	370
16-17	410
17-18	370
18-19	410
19-20	370
20-21	410
21-21'	235

CUADRO DE COLUMNAS					
TIPO	B (cm)	H (cm)	1 (cm4)		
C-1	30	50	312500		
C-2	30	50	312500		
C-3	30	50	312500		
C-4	30	50	312500		
C-5	30	50	312500		
C-6	30	50	312500		
C-7	30	50	312500		
C-8	30	50	312500		
C-9	30	50	312500		

CUADRO DE VIGAS					
TIPO B (cm) H (cm) I (cm4)					
VC	30	50	312500		
V-101	30	40	160000		
V-201	30	40	160000		
V-301	30	40	160000		
V-401	30	20	20000		


Z-Z			
PISO	H (cm)		
1er PISO	280		
2do PISO	280		
3er PISO	280		
4to PISO	260		

CALCULO DE RIGIDECES RELATIVAS

		1ER PISO		2DO PISO		3RO PISO		4TO PISO	
TIPO	l (cm4)	L (cm)	K	L (cm)	K	L (cm)	K	L (cm)	К
C-1	312500	280	1116.07	280	1116.07	280	1116.07	260	1201.92
C-2	312500	280	1116.07	280	1116.07	280	1116.07	260	1201.92
C-3	312500	280	1116.07	280	1116.07	280	1116.07	260	1201.92
C-4	312500	280	1116.07	280	1116.07	280	1116.07	260	1201.92
C-5	312500	280	1116.07	280	1116.07	280	1116.07	260	1201.92
C-6	312500	280	1116.07	280	1116.07	280	1116.07	260	1201.92
C-7	312500	280	1116.07	280	1116.07	280	1116.07	260	1201.92
C-8	312500	280	1116.07	280	1116.07	280	1116.07	260	1201.92
C-9	312500	280	1116.07	280	1116.07	280	1116.07	260	1201.92

			VC	V-:	l01	ν-:	201	V-:	01	1	/-401
TRAMO	LONG. (cm)	I (cm4)	K	l (cm4)	K	I (cm4)	К	I (cm4)	K	i (cm4)	K
13-14	370	312500	844.59	160000	432.43	160000	432.43	160000	432.43	20000	54.05
14-15	410	1 :		160000	390.24	160000	390.24	160000	390.24	20000	48.78
15-16	370	1	ļ	160000	432.43	160000	432.43	160000	432.43	20000	54.05
16-17	410	,		160000	390.24	160000	390.24	160000	390.24	20000	48.78
17-18	370			160000	432.43	160000	432.43	160000	432.43	20000	54.05
18-19	410		ľ	160000	390.24	160000	390.24	160000	390.24	20000	48.78
19-20	370			160000	432.43	160000	432.43	160000	432.43	20000	54.05
20-21	410			160000	390,24	160000	390.24	160000	390.24	20000	48.78
21-21	235			160000	680.85	160000	680.85	160000	680.85	20000	85.11

			· · · · · · · · · · · · · · · · · · ·		
	TIPO	Ŕ	a	Kemp.	K₂(Tn/cm)
	C-1	0.57	0.22	35.87	7.98
	C-2	0.75	0.27	35.87	9.75
9	C-3	0.74	0.45	35.87	16.21
. 5	C-4	0.74	0.45	35.87	16.21
PRIMER PISO	C-5	0.74	0.45	35.87	16.21
. 🧸	C-6	0.74	0.45	35.87	16.21
*	C-7	0.74	0.45	35.87	16.21
-	C-8	0.74	0.45	35.87	16.21
·	C-9	0.96	0.49	35.87	17.69
	C-1	0.39	0.16	35.87	5.82
_	C-2	0.74	0.27	35.87	9,66
SEGUNDO PISO	C-3	0.74	0.27	35.87	9.66
a	C-4	0.74	0.27	35.87	9.66
Ž	C-5	0.74	0.27	35.87	9.66
듔	C-6	0.74	0.27	35.87	9.66
SE	C-7	0.74	0.27	35.87	9.66
	C-8	0.74	0.27	35.87	9.66
	C-9	0.96	0.32	35.87	11.63
	C-1	0.39	0.16	35.87	5.82
	C-2	0.74	0.27	35.87	9.66
ု မွ	C-3	0.74	0.27	35.87	9.66
<u> </u>	C-4	0.74	0.27	35.87	9,66
TERCER PISO	C-5	0.74	0.27	35.87	9.66
	C-6	0.74	0.27	35.87	9.66
-	C-7	0.74	0.27	35.87	9.66
	C-8	0.74	0.27	35.87	9.66
	C-9	0.96	0.32	35.87	11.63
	C-1	0.20	0.09	44.81	4.12
, 0	C-2	0.39	0.16	44.81	7.23
CUARTO PISO	C-3	0.39	0.16	44.81	7.23
; ₽	C-4	0,39	0.16	44.81	7.23
¥	C-5	0.39	0.16	44.81	7.23
3	C-6	0.39	0.16	44.81	7,23
	C-7	0,39	0.16	44.81	7.23
ارز د ما		0.20	0.09	44.81	4.12

PORTICO D-D

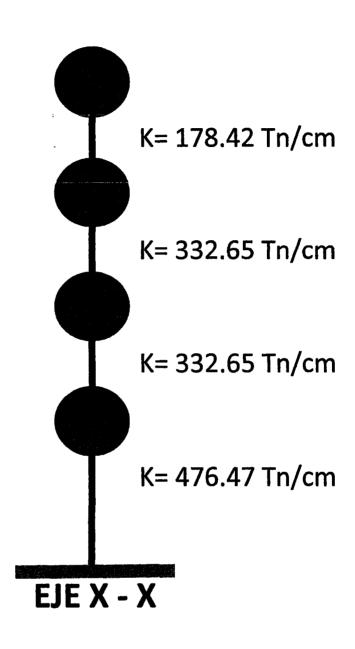
E = 210 Tn/cm2

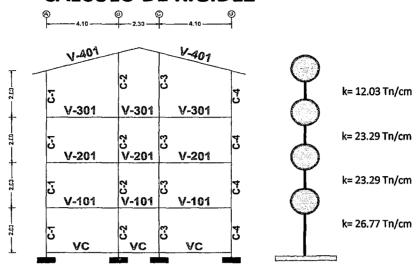
X-X						
TRAMO	L (cm)					
13-14	370					
14-15	410					
15-16	370					
16-17	410					
17-18	370					
18-19	410					
19-20	370					
20-21	410					
21-21'	235					

CUADRO DE COLUMNAS							
TIPO	B (cm)	H (cm)	I (cm4)				
C-1	30	50	312500				
C-2	30	50	312500				
C-3	30	50	312500				
C-4	30	50	312500				
C-5	30	50	312500				
C-6	30	50	312500				
C-7	30	50	312500				
C-8	30	50	312500				
C-9	30	50	312500				

	CUADRO DE VIGAS								
TIPO	B (cm)	H (cm)	1 (cm4)						
VC	30	50	312500						
V-101	30	40	160000						
V-201	30	40	160000						
V-301	30	40	160000						
V-401	30	20	20000						

Z <i>-</i> Z						
PISO	H (cm)					
1er PISO	280					
2do PISO	280					
3er PISO	280					
4to PISO	260					


CALCULO DE RIGIDECES RELATIVAS


	1ER PISO		2DO PISO		3RO PISO		4TO PISO		
TIPO	i (cm4)	L (cm)	К	L (cm)	K	L (cm)	K	L (cm)	K
C-1	312500	280	1116.07	280	1116.07	280	1116.07	260	1201.92
C-2	312500	280	1116.07	280	1116.07	280	1116.07	260	1201.92
C-3	312500	280	1116.07	280	1116.07	280	1116.07	260	1201.92
C-4	312500	280	1116.07	280	1116.07	280	1116.07	260	1201.92
C-5	312500	280	1116.07	280	1116.07	280	1116.07	260	1201.92
C-6	312500	280	1116.07	280	1116.07	280	1116.07	260	1201.92
C-7	312500	280	1116.07	280	1116.07	280	1116.07	260	1201.92
C-8	312500	280	1116.07	280	1116.07	280	1116.07	260	1201.92
C-9	312500	280	1116.07	280	1116.07	280	_ 1116.07	260	1201.92

		VC				V-301		V-401			
TRAMO	LONG. (cm)	1 (cm4)	K	i (cm4)	K	l (cm4)	К	l (cm4)	K	I (cm4)	К
13-14	370	312500	844.59	160000	432.43	160000	432.43	160000	432.43	20000	54.05
14-15	410	312500	762.20	160000	390.24	160000	390.24	160000	390.24	20000	48.78
15-16	370	312500	844.59	160000	432.43	160000	432.43	160000	432.43	20000	54.05
16-17	410	312500	762.20	160000	390.24	160000	390.24	160000	390.24	20000	48.78
17-18	370	312500	844.59	160000	432,43	160000	432.43	160000	432.43	20000	54.05
18-19	410	312500	762.20	160000	390,24	160000	390.24	160000	390.24	20000	48.78
19-20	370	312500	844,59	160000	432.43	160000	432.43	160000	432.43	20000	54.05
20-21	410	312500	762.20	160000	390.24	160000	390.24	160000	390.24	20000	48.78
21-21'	235	312500		160000	680,85	160000	680.85	160000	680.85	20000	85.11

1	TIPO	ĸ			Ke(Tn/cm)
				Kemp.	
	C-1	0.57	0.22	35.87	7.98
	C-2	1.09	0.35	35.87	12.64
S	C-3	1.09	0.35	35.87	12.64
₹	C-4	1.09	0.35	35.87	12.64
PRIMER PISO	C-5	1.09	0.35	35.87	12.64
, ≨ ¦	C-6	1.09	0.35	35.87	12.64
. 5	C-7	1.09	0.35	35.87	12.64
:]	C-8	1.09	0.35	35.87	12.64
;	C-9	0.82	0.29	35.87	10.44
:	C-1	0.39	0.16	35.87	5.82
_	C-2	0.74	0.27	35.87	9,66
SEGUNDO PISO	C-3	0.74	0.27	35.87	9.66
. 6	C-4	0.74	0.27	35.87	9.66
ğ	C-5	0.74	0.27	35.87	9.66
, 5	C-6	0.74	0.27	35.87	9.66
SEC	C-7	0.74	0.27	35.87	9,66
	C-8	0.74	0.27	35.87	9.66
		0.96	0.32	35.87	11.63
:	C-1	0.39	0.16	35.87	5.82
	, C-2	0.74	0.27	35.87	9.66
g l	C-3	0.74	0.27	35.87	9.66
품	C-4	0.74	0.27	35.87	9.66
TERCER PISO	C-5	0.74	0.27	35.87	9.66
	C-6	0.74	0.27	35.87	9.66
-	C-7	0.74	0.27	35.87	9.66
	C-8	0.74	0.27	35.87	9.66
	C-9	0.96	0.32	35,87	11.63
	C-1	0.20	0.09	44.81	4.12
	C-2	0.39	0.16	44.81	7.23
: <u>\$</u>	С-3	0.39	0.16	44.81	7.23
CUARTO PISO	C-4	0.39	0.16	44.81	7.23
. 👺	C-5	0.39	0.16	44.81	7.23
ž l	C-6	0.39	0.16	44.81	7.23
	C-7	0.39	0.16	44.81	7.23
	C-8	0.20	0.09	44.81	4.12

•

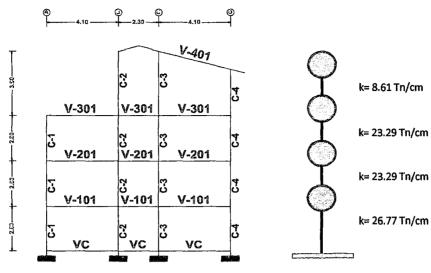
PORTICOS 13-17

Y-Y					
TRAMO	LONG. (cm)				
A - B	410				
B-C	230				
C-D	410				

Z-Z					
PISO	ALT. (cm)				
1	280				
2	280				
3	280				
4	280				
4'	390				

E = 210 Tn/cm2

CUADRO DE COLUMNAS						
TIPO	B (cm)	H (cm)	I (cm4)			
C-1	50	30	112500			
C-2	50	30	112500			
C-3	50	30	112500			
C-4	50	30	112500			


CUADRO DE VIGAS						
TIPO	B (cm)	H (cm)	I (cm4)			
VC	30	50	312500			
V-101	30	40	160000			
V-201	30	40	160000			
V-301	30	40	160000			
V-401	30	30	67500			

		1ER	PISO	2D0	PISO	3RO	PISO	4TO	PISO
TIPO	i (cm4)	L (cm)	K (cm3)						
C-1	112500	280	401.79	280	401.79	280	401.79	280	401.79
C-2	112500	280	401.79	280	401.79	280	401.79	390	288.46
C-3	112500	280	401.79	280	401.79	280	401.79	390	288.46
C-4	112500	280	401.79	280	401.79	280	401.79	280	401.79

		V	/C	V-:	101	V-:	201	V-:	301
TRAMO	LONG. (cm)	I (cm4)	K	1 (cm4)	К	I (cm4)	K	l (cm4)	K
A - B	410	312500	762.20	160000	390.24	160000	390.24	160000	390.24
B-C	230	312500	762.20	160000	695.65	160000	695.65	160000	695.65
C-D	410	312500	762.20	160000	390.24	160000	390.24	160000	390.24

		V-401		
TRAMO	LONG. (cm)	l (cm4)	K	
A-B	424	67500	159.20	
B-C	238	67500	283.61	
C-D	424	67500	159.20	

	TIPO	Ŕ	а	Kemp.	Kd(Tn/cm)
	C-1	1.43	0.42	12.91	5.39
PISO	C-2	3.25	0.62	12.91	7.99
1ER P	C-3	3.25	0.62	12.91	7.99
. 4	C-4	1.43	0.42	12.91	5.39
	C-1	0.97	0.33	12.91	4.22
PISO	C-2	2.70	0.57	12.91	7.42
2po	C-3	2.70	0.57	12.91	7.42
7	C-4	0.97	0.33	12.91	4.22
	C-1	0.97	0.33	12.91	4.22
Piso	C-2	2.70	0.57	12.91	7.42
3er [C-3	2.70	0.57	12.91	7.42
	C-4	0.97	0.33	12.91	4.22
0	C-1	0.68	0.25	12.91	3.29
PISO	C-2	2.65	0.57	4.78	2.72
1014	C-3	2.65	0.57	4.78	2.72
4	C-4	0.68	0.25	12.91	3.29

PORTICOS 18-20

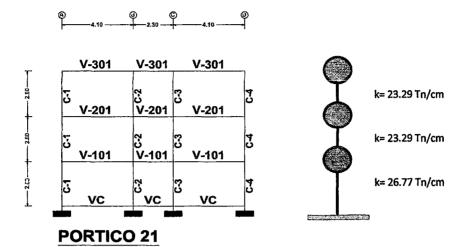
Y-Y					
TRAMO LONG. (cm)					
A - B	410				
B-C	230				
C-D	410				

Z - Z				
PISO ALT. (cm)				
1	280			
2	280			
3	280			
4	280			
4'	390			

E = 210 Tn/cm2

CUADRO DE COLUMNAS						
TIPO	B (cm)	H (cm)	I (cm4)			
C-1	50	30	112500			
C-2	50	30	112500			
C-3	50	30	112500			
C-4	50	30	112500			

CUADRO DE VIGAS						
TIPO	B (cm)	H (cm)	J (cm4)			
VC	30	50	312500			
V-101	30	40	160000			
V-201	30	40	160000			
V-301	30	40	160000			
V-401	30	30	67500			


		1ER	PISO	2DO	PISO	3RO	PISO	4TO	PISO
TIPO	I (cm4)	L (cm)	K (cm3)						
C-1	112500	280	401.79	280	401.79	280	401.79		
C-2	112500	280	401.79	280	401.79	280	401.79	390	288.46
C-3	112500	280	401.79	280	401.79	280	401.79	390	288.46
C-4	112500	280	401.79	280	401.79	280	401.79	280	401.79

		V	rC .	V-:	101	V-:	201	V-:	301
TRAMO	LONG. (cm)	l (cm4)	К	I (cm4)	К	l (cm4)	К	I (cm4)	K
A - B	410	312500	762.20	160000	390.24	160000	390.24	160000	390.24
B - C	230	312500	762.20	160000	695.65	160000	695.65	160000	695.65
C-D	410	312500	762.20	160000	390.24	160000	390.24	160000	390.24

		۷-	401
TRAMO	LONG. (cm)	i (cm4)	K
A-B			
B-C	238	67500	283.61
C-D	424	67500	159.20

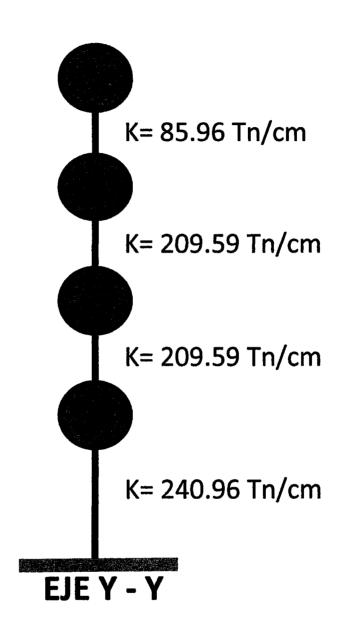
1					,
*	TIPO	Ŕ	а	Kemp.	Kd(Tn/cm)
0	C-1	1.43	0.42	12.91	5.39
PISO	C-2	3.25	0.62	12.91	7.99
1er l	C-3	3.25	0.62	12.91	7.99
<u> </u>	C-4	1.43	0.42	12.91	5.39
	C-1	0.97	0.33	12.91	4.22
PISO	C-2	2.70	0.57	12.91	7.42
200 l	C-3	2.70	0.57	12.91	7.42
7	C-4	0.97	0.33	12.91	4.22
0	C-1	0.97	0.33	12.91	4.22
PISO	C-2	2.70	0.57	12.91	7.42
3er	C-3	2,70	0.57	12.91	7.42
l w	C-4	0.97	0.33	12.91	4.22
0	C-1	0.00	0.00	0.00	0.00
PISO	C-2	2.37	0.54	4.78	2.59
410	C-3	2.65	0.57	4.78	2.72
4	C-4	0.68	0.25	12.91	3.29

CALCULO DE RIGIDEZ

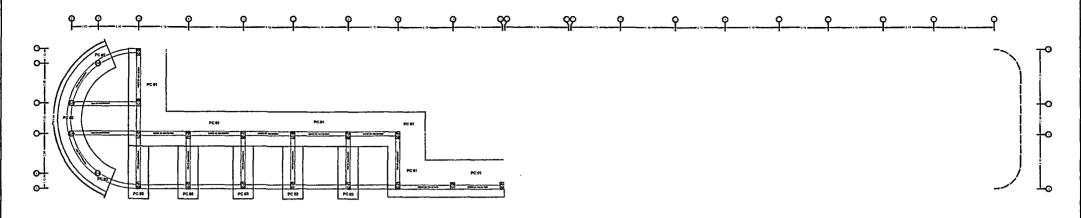
Y-Y						
TRAMO LONG. (cm)						
A - B	410					
B-C	230					
C-D	410					

Z - Z							
PISO ALT. (cm)							
1	280						
2	280						
3	280						
4	280						
4'	390						

210	Tn/	cm2	2
	210	210 Tn/	210 Tn/cm2

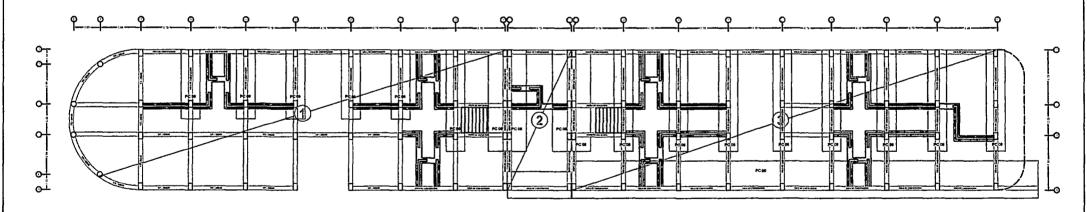

	CUADRO DE COLUMNAS									
TIPO	TIPO B (cm) H (cm) I (cm4)									
C-1	50	30	112500							
C-2	50	30	112500							
C-3	50	30	112500							
C-4	50	30	112500							

	CUADRO DE VIGAS									
TIPO	TIPO B (cm) H (cm) I (cm4)									
VC	30	50	312500							
V-101	30	40	160000							
V-201	30	40	160000							
V-301	30	40	160000							
V-401	30	30	67500							


		1ER PISO		2DO PISO		3RO PISO	
TIPO	I (cm4)	L (cm)	K (cm3)	L (cm)	K (cm3)	L (cm)	K (cm3)
C-1	112500	280	401.79	280	401.79	280	401.79
C-2	112500	280	401.79	280	401.79	280	401.79
C-3	112500	280	401.79	280	401.79	280	401.79
C-4	112500	280	401.79	280	401.79	280	401.79

		٧	С	V-:	l01	V-2	201	ν-:	301
TRAMO	LONG. (cm)	I (cm4)	K	I (cm4)	K	i (cm4)	K	l (cm4)	К
A-B	410	312500	762.20	160000	390.24	160000	390.24	160000	390.24
B-C	230	312500	762.20	160000	695.65	160000	695.65	160000	695.65
C-D	410_	312500	762.20	160000	390.24	160000	390.24	160000	390.24

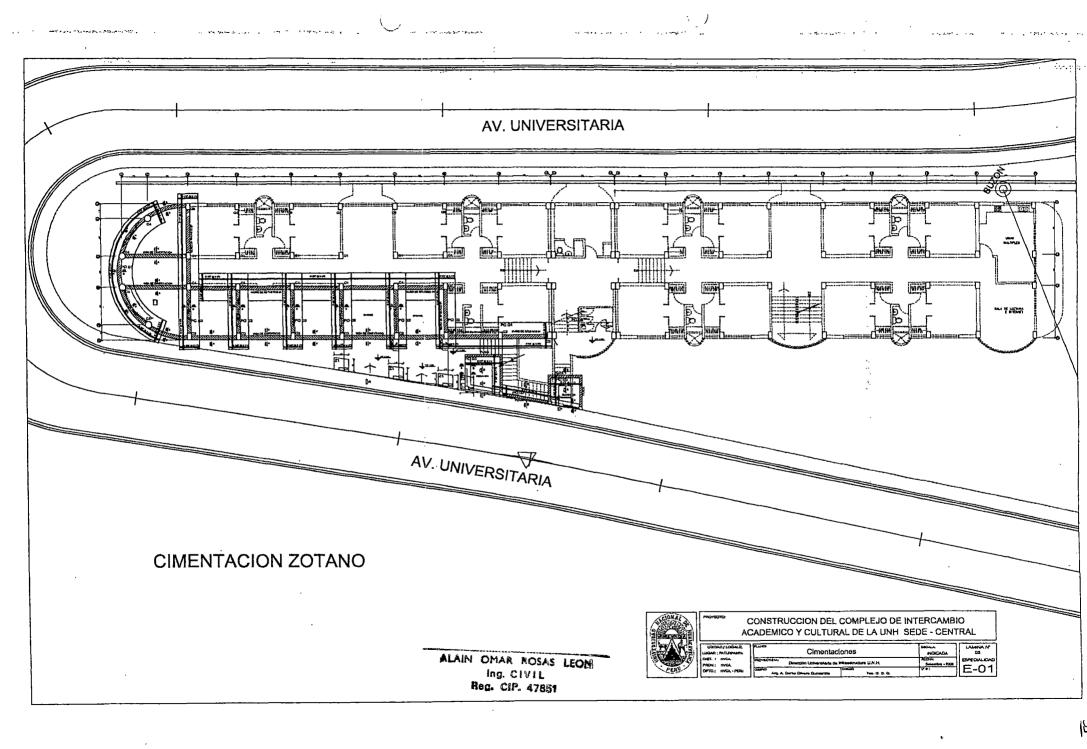
- local staff MINI was rotal to	TIPO	Ŕ	а	Kemp.	Kd(Tn/cm)
	C-1	1.43	0.42	12.91	5.39
PISO	C-2	3.25	0.62	12.91	7.99
1er f	C-3	3.25	0.62	12.91	7.99
न	C-4	1.43	0.42	12.91	5.39
0	C-1	0.97	0.33	12.91	4.22
PISO	C-2	2.70	0.57	12.91	7.42
200	C-3	2.70	0.57	12.91	7.42
7	C-4	0.97	0.33	12.91	4.22
	C-1	0.97	0.33	12.91	4.22
PISO	C-2	2.70	0.57	12.91	7.42
3ER §	C-3	2.70	0.57	12.91	7.42
I M	C-4	0.97	0.33	12.91	4.22

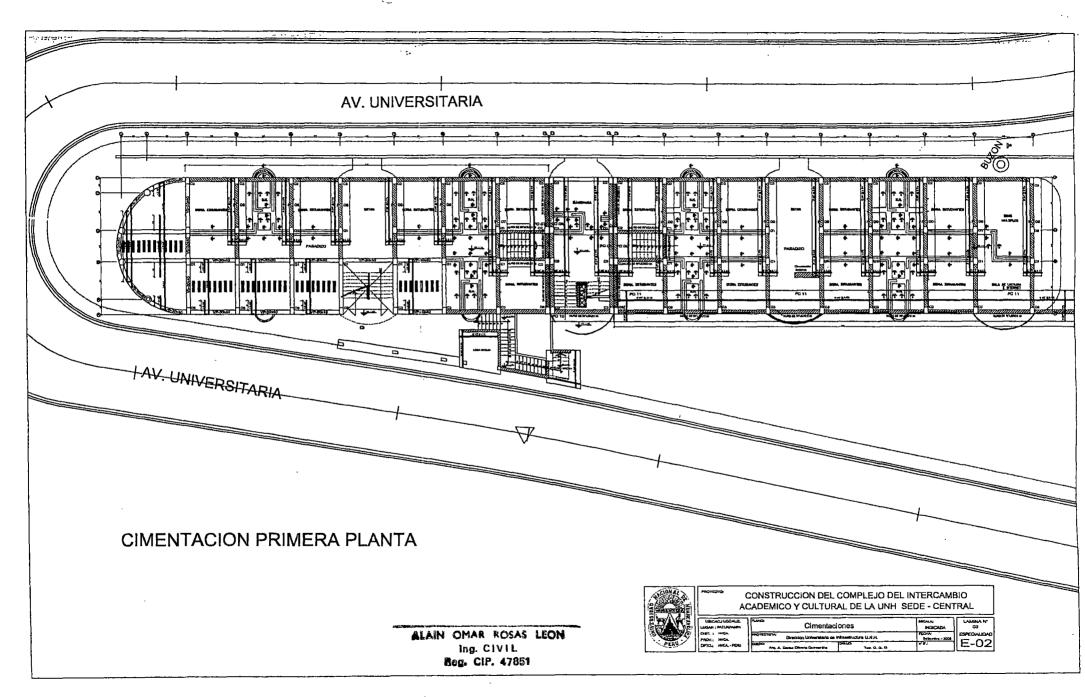


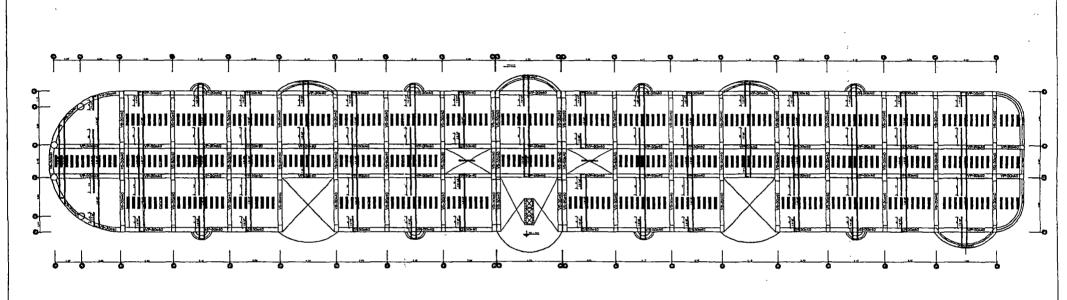
PLANOS

CIMENTACION SOTANO

ESC. 1/75


CIMENTACION PRIMERA PLANTA


ESC. 1/75


CUADRO DE COLUMNAS					
TIPO DIMENSION		ACERO	ESTRIBOS	CANT	
C-1	0.30 x 0.50 m	8 Ø 3/4"	Ø38;3 @ 005,4 @ 0.103 @ 0.15,8tm. @ 020 m	4	
C-2	0.30 x 0.50 m	6034"+2058"	Ø38 ; 3 @ 0.05,4 @ 0.10,3 @ 0.15,8tm. @ 0.20 m	72	
C-3	Ø 0.40 m	4Ø3/4"+4Ø5/8"	Ø348 ; 3 @ 0.05, 4 @ 0.10,3 @ 0.15,Rim. @ 0.20 m	4	
C-4	0.20 x 0.40 m	4Ø5/8"+2Ø1/2"	Ø38;3 @ 005,4 @ 0.10,3 @ 0.15,85s. @ 0.29 m	3	
C-5	0.25 x 0.25 m	4Ø1/2"	Ø345;3 @ 0.05,4 @ 0.103 @ 0.15,8tm. @ 0.20 m	2	

CUADRO DE ZAPATAS						
TIPO	DIMENSION	Н	h	ACERO X	ACERO Y	h
PC-1	39.10 x 2.90 m	1.60	0.50	5/8 @ 0.175	5/8 @ 0.175	1
PC-2	14.03 x 1.80 m	1.60	0,50	5/8 @ 0.175	5/8 @ 0.175	1
PC-3	3.95 x 1.50 m	1.60	0.50	5/8 @ 0.175	5/8 @ 0.175	5
PC-4	13.48 x 0.80 m	1.60	0.50	5/8 @ 0.175	5/8 @ 0.175	1
PC-5	34.70 x 1.80 m	1.60	0.50	5/8 @ 0.175	5/8 @ 0.175	1
PC-6	7.58 x 1.40 m	1.60	0.50	5/8 @ 0.175	5/8 @ 0.175	13
PC-7	5,18 x 1.40 m	1.60	0.50	5/8 @ 0,175	5/8 @ 0.175	5

CONSTRUCCION DEL COMPLEJO DE INTERCAMBIO ACADÉMICO Y CULTURALDE LA UNH SEDE-CENTRA L					
UNICACALOCALIZ	Mario.	LAMINA Nº			
LUCAR: PATURPARPA Av. Utimorilate	SOTANO - CIMENTACIONES	01			

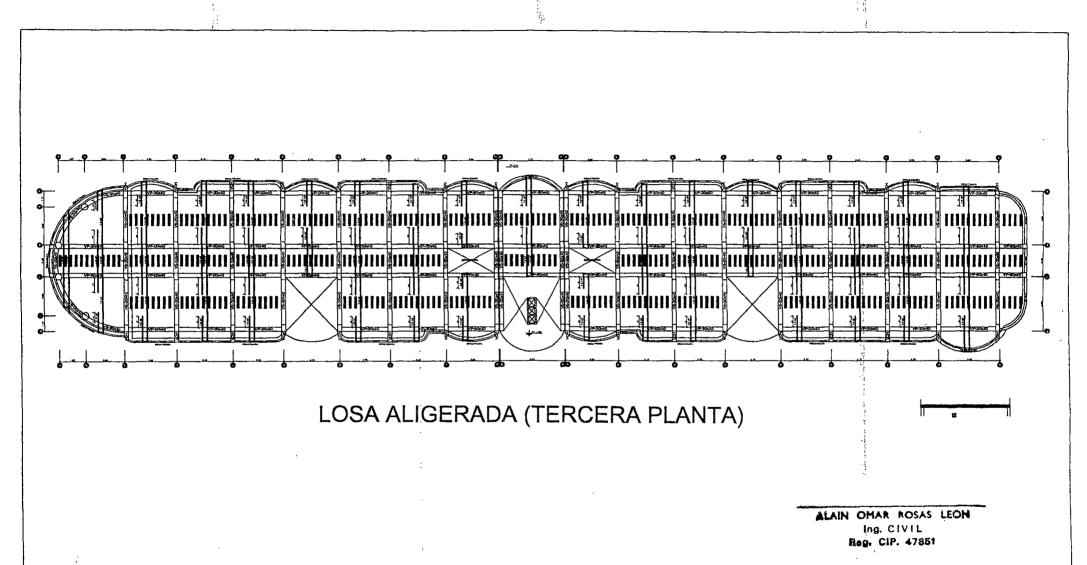


LOSA ALIGERADA (SEGUNDA PLANTA)

ALAIN OMAR ROSAS LEON Ing. CIVIL Reg. CIP. 47851

CONSTRUCCION DEL COMPLEJO DEL INTERCAMBIO ACADEMICO Y CULTURAL DE LA UNH SEDE - CENTRAL

LOSA Aligerada 2da, Planta MOCADA

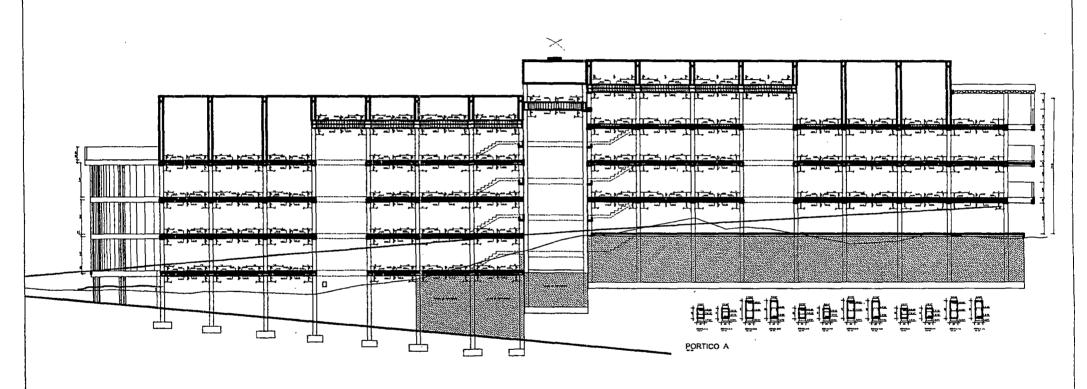

PORCHETA Describe de Presidentario Librario Escapa

PALA Days Describe Advantage

PALA Days Describe Advantage

PALA DAYS DESCRIBERATION TO BE DESCRIBERATION TO BE

1,

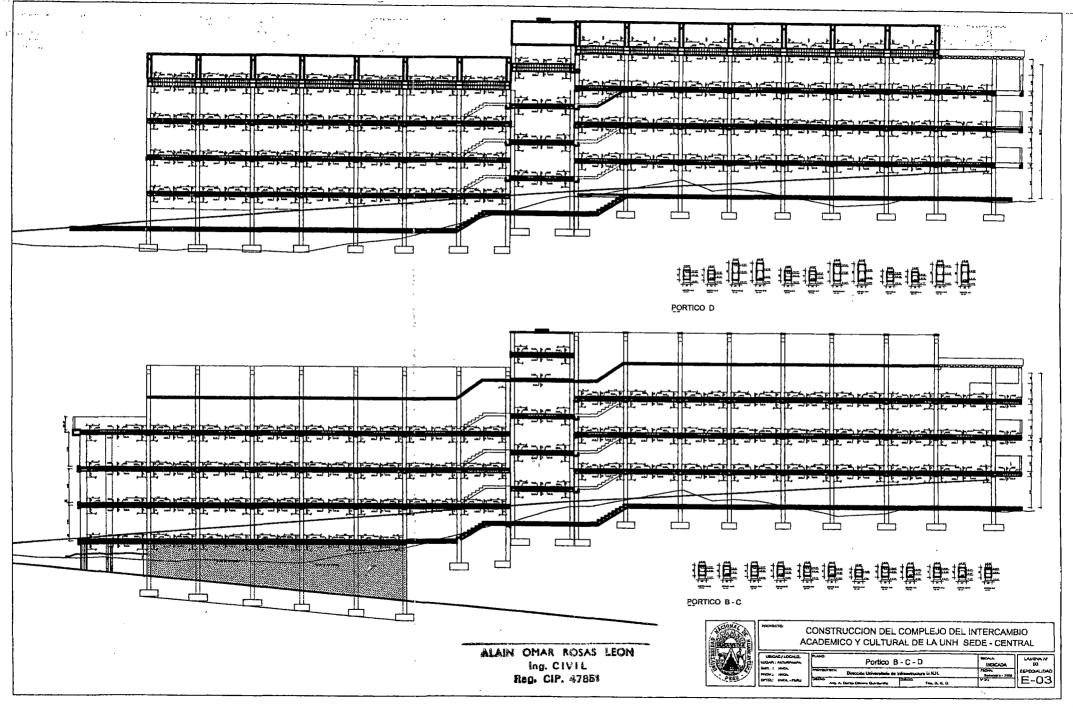

CONSTRUCCION DEL COMPLEJO DEL INTERCAMBIO
ACADEMICO Y CULTURAL DE LA UNH SEDE - CENTRAL

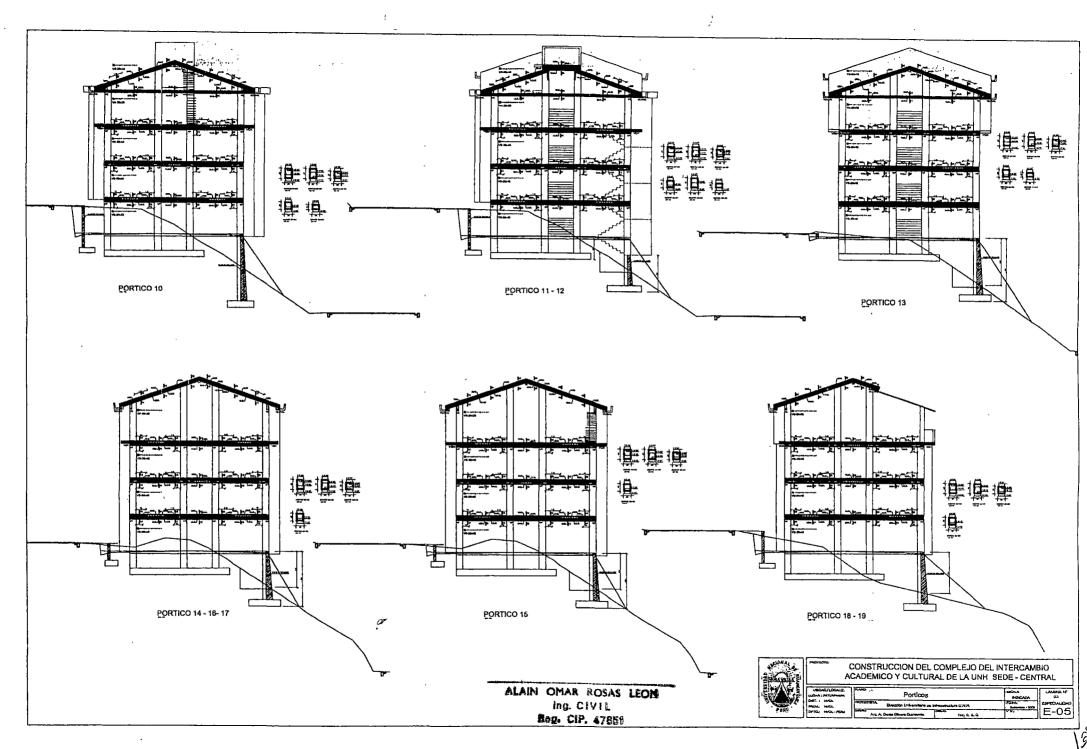
LOSA Allgerada 378. Planta MONICOL

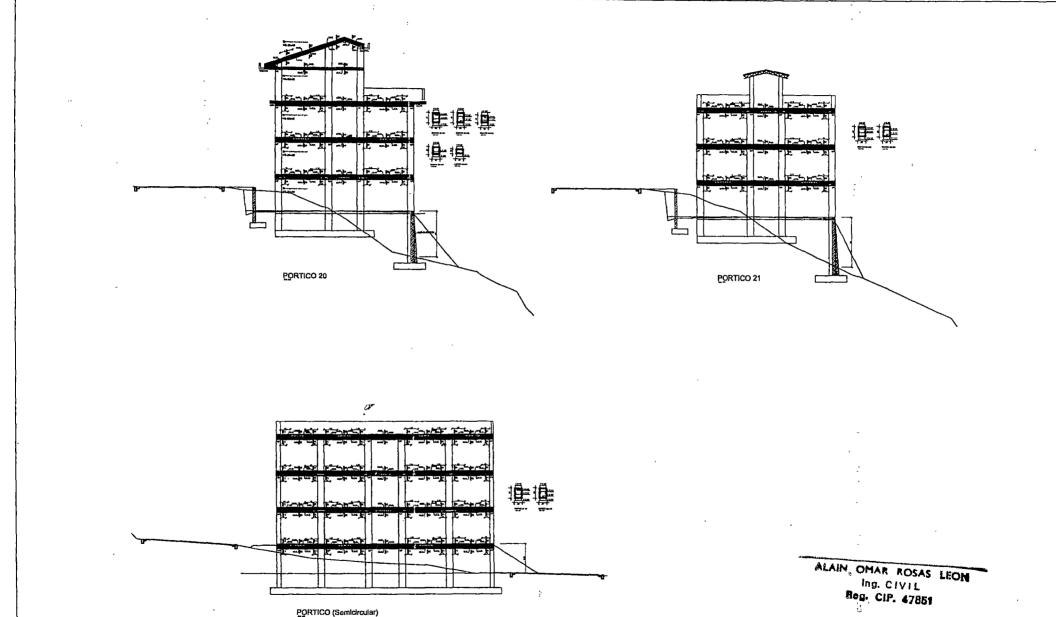
LOSA Allgerada 378. Planta MONICOL

MONI

16




ALAIN OMAR ROSAS LEON Ing. CIVIL Reg. CIP. 47851

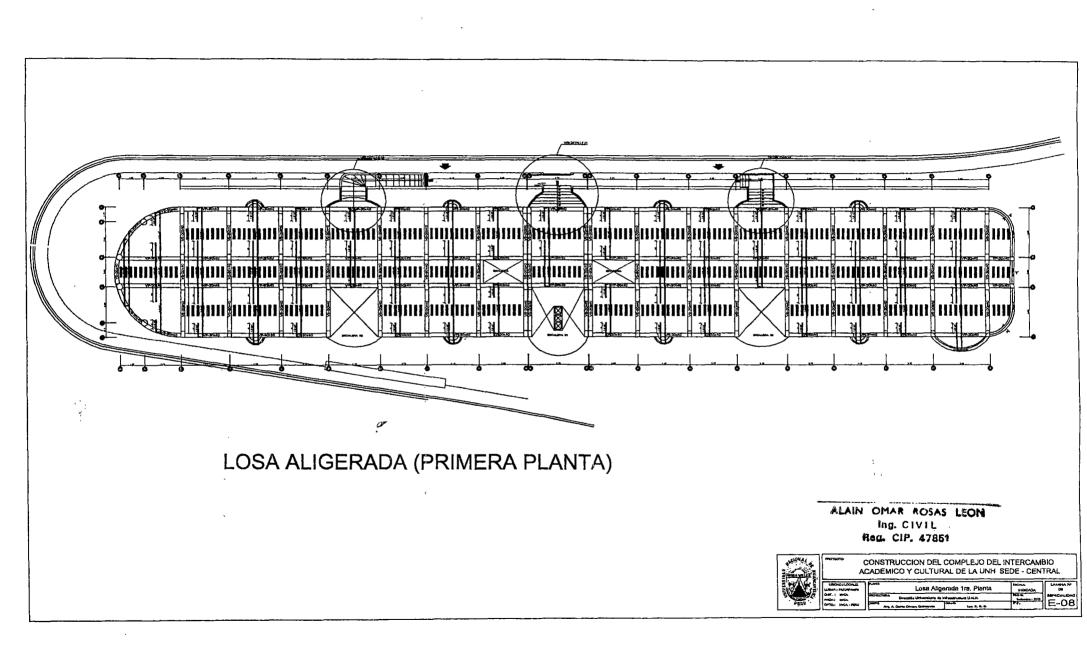


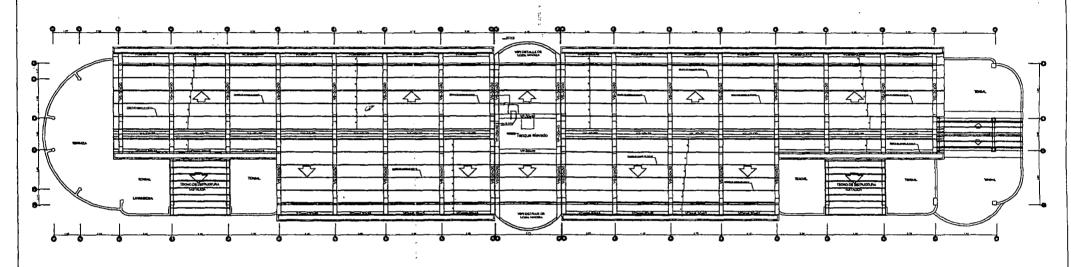
CONSTRUCCION DEL COMPLEJO DEL INTERCAMBIO ACADEMICO Y CULTURAL DE LA UNH SEDE - CENTRAL

Portico A	SECALA: INDICADA	LAMINA N°
PROVISOTISTA: Dirección Universitans de Infraostructura U.N.J.t.	FECHA Sedembry - 2008	ESPECIALIDAD
Arg. A. Cartes Olivers Character Davids Tac, G. G. Q.	V-10-	E-03

CONSTRUCCION DEL COMPLEJO DEL INTERCAMBIO ACADEMICO Y CULTURAL DE LA UNH SEDE - CENTRAL

VECAG/LOCALIE	Paris -
-	F
MET.: HACA. TROMJ MYCA.	PROTECTION OF DISCOUNTS OF
PTOL HAGA-PONI	Art, A. Darres Consus

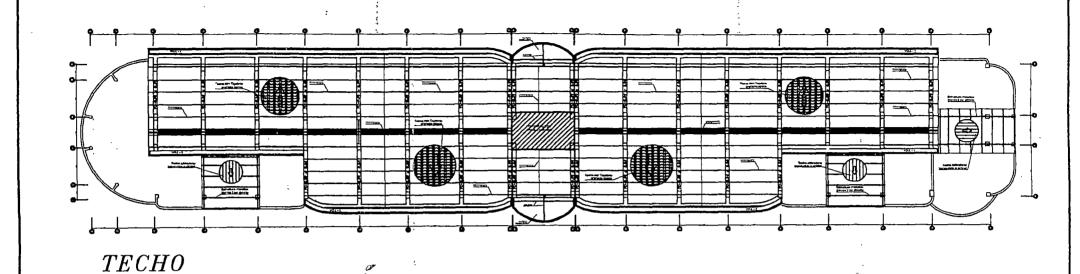

PORTICOS BIOCADA


FINA

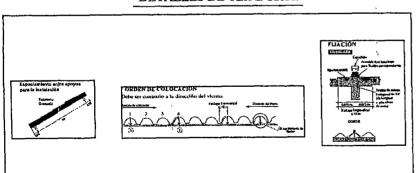
Desgocio Untervintano de Infraenzana UAIX

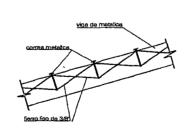
Desgocio Untervintano UAIX

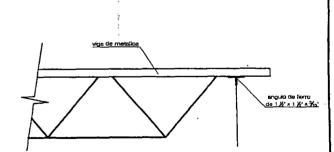
Desgocio UAIX



TECHO (CUARTA PLANTA)


ALAIN OMAR ROSAS LEON Ing. CIVIL Reg. CIP. 47851





DETALLES DE TEJAFORTE

ESCALA 1/100

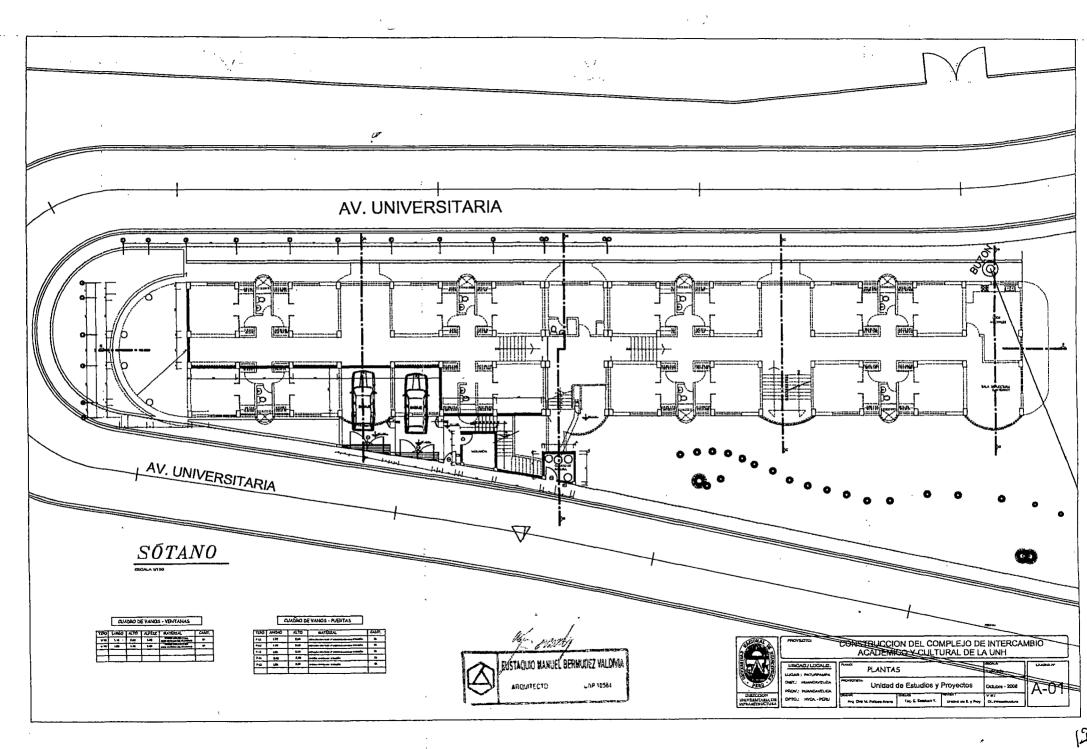
DETALLES DE ESTRUCTURA METALICA

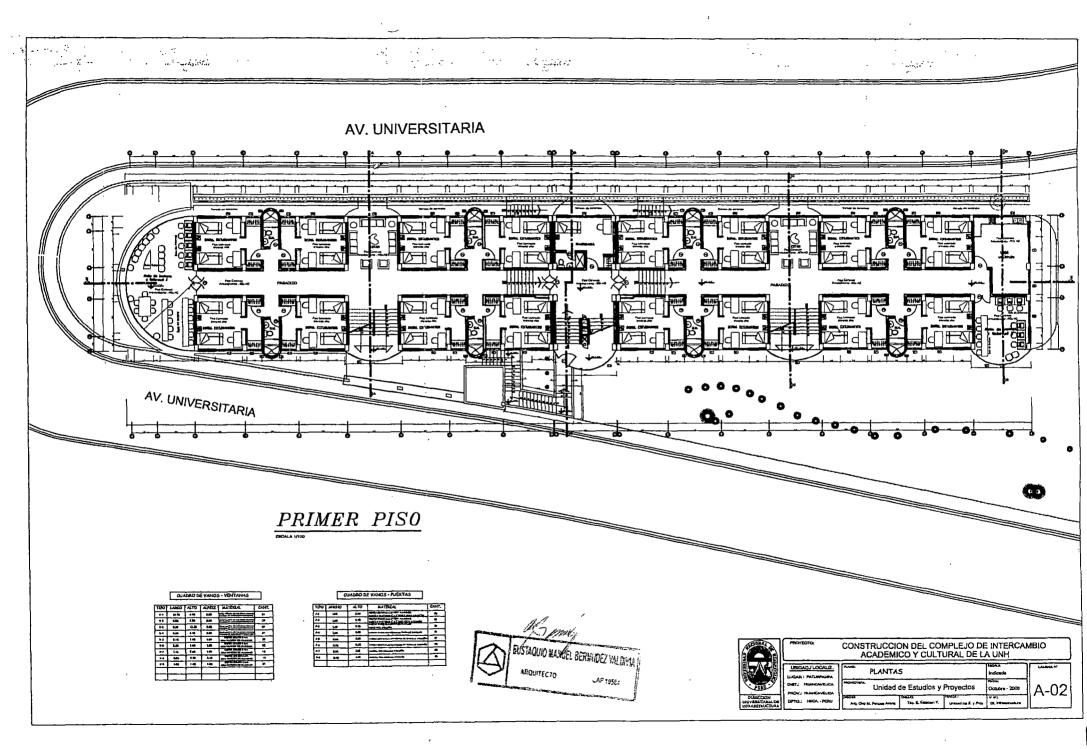
02 angulos de flerro de 1 ½ x 1 ½ x ¾

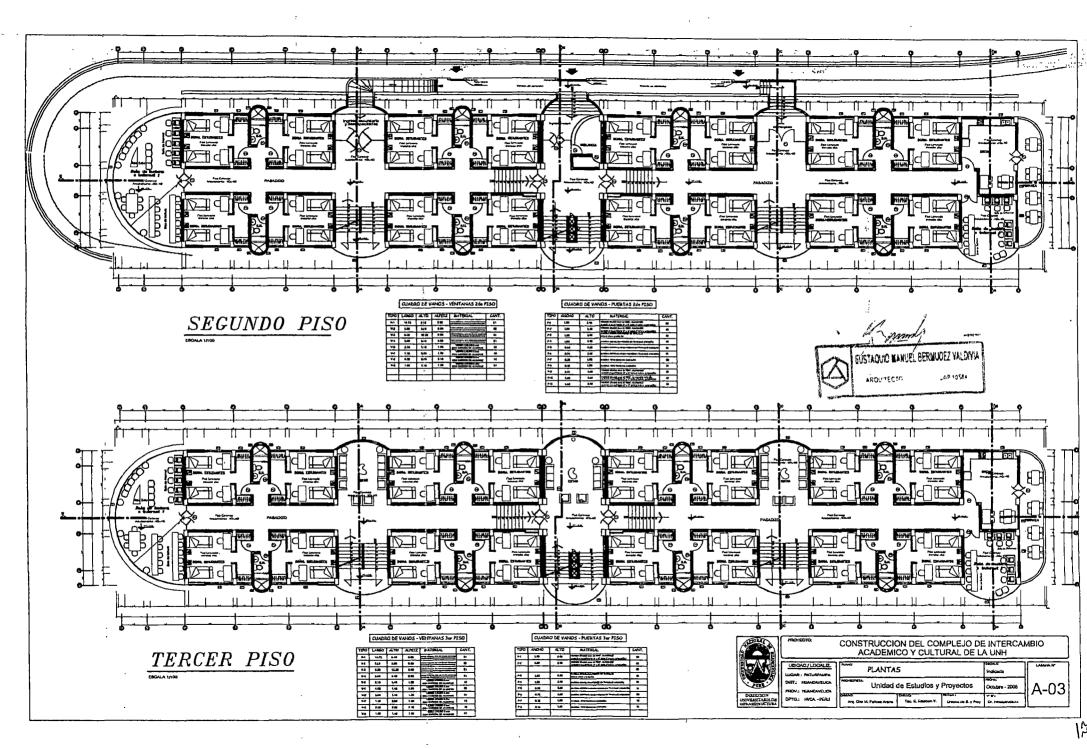
DETALLE ARMADURA

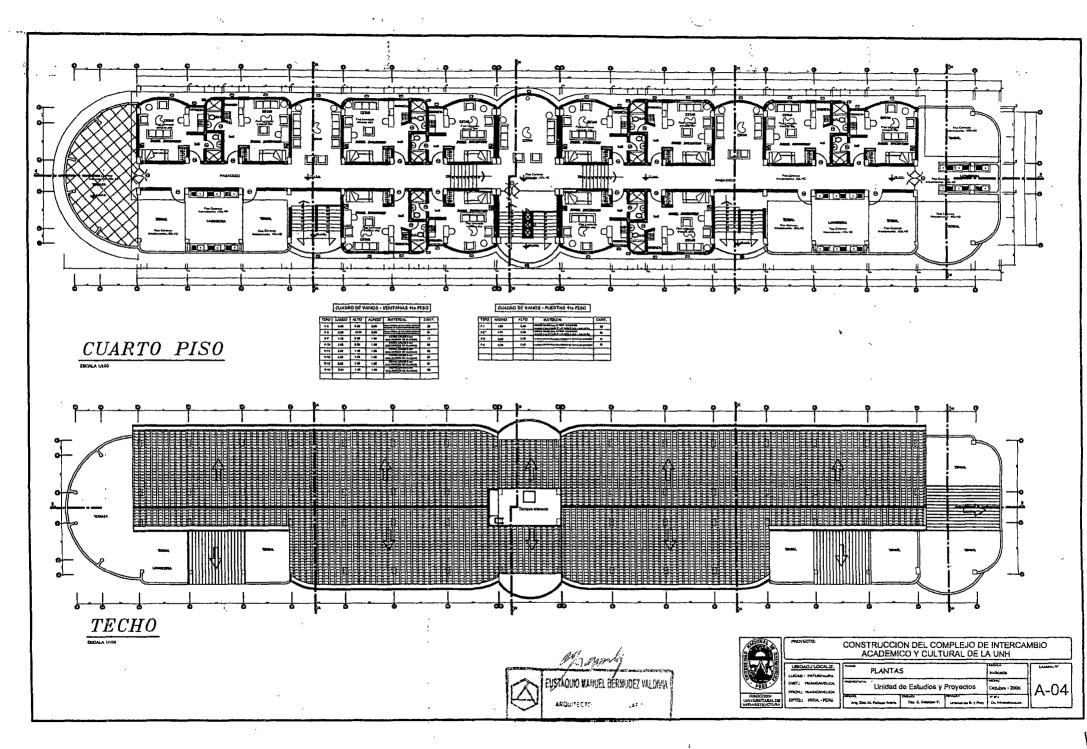
AP 10584

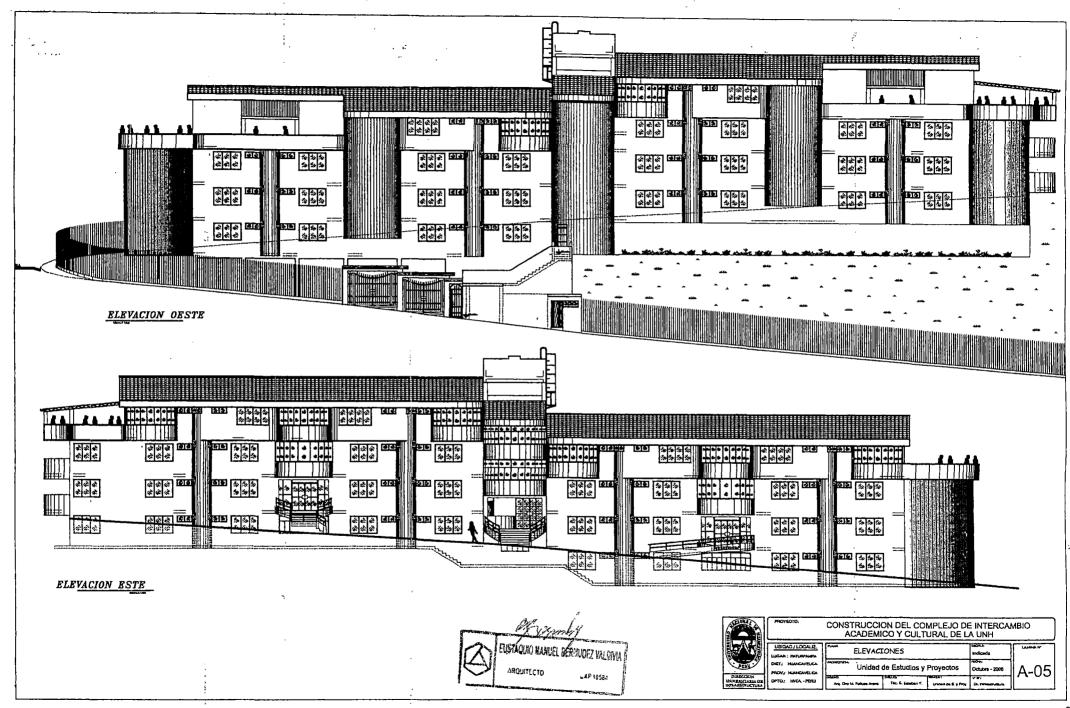
DETALLE DE FIGACION DE CORREA

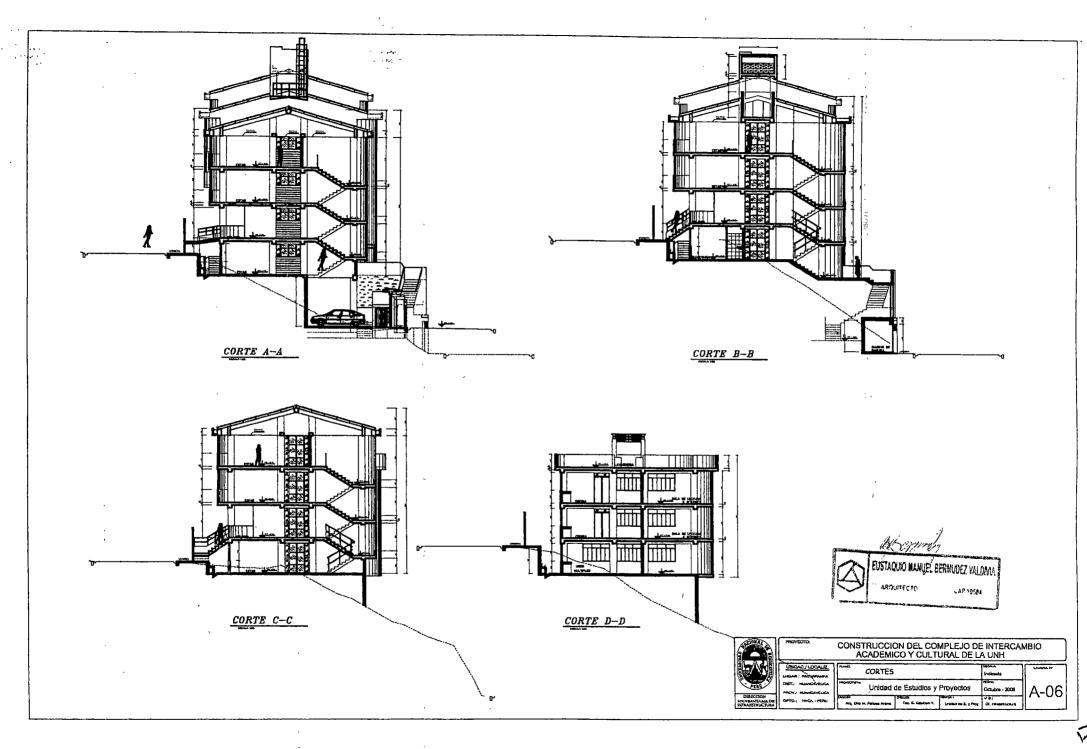

DETALLE CORREA METALICA

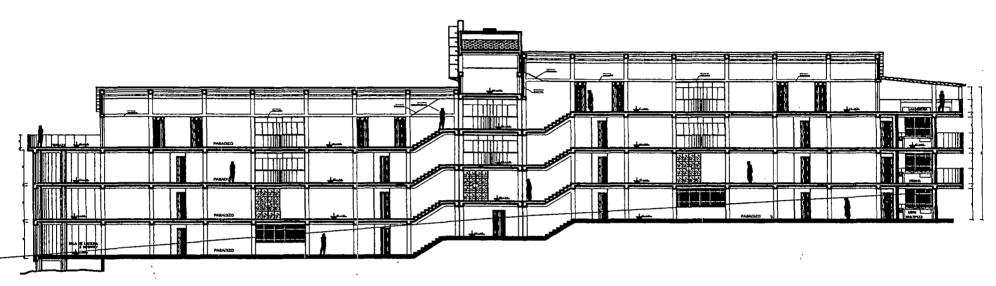

DPTG.: HVCA - PERU


CONSTRUCCION DEL COMPLEJO DE INTERCAMBIO ACADEMICO Y CULTURAL DE LA UNH ESTRUCTURA DE TECHO


Unidad de Estudios y Proyectos


E-00





CORTE E-E

2 1847 2 1847 2 1847

EUSTAQUIO HANUEL BERMUGEZ VALDOVIA

AROLATECTO .AF 12564

	CONSTRÚCCION DEL COMPLEJO DE INTERCAMBIO ACADEMICO Y CULTURAL DE LA UNH					
	LUGAR : PATURAMPA	CORTES			Indicada	A-08
	DIST: HIANCAVELICA PROV: HUANCAVELICA	Unidad de Estudios y Proyectos			Octubre - 2008	
DIRECCIÓN UNIVERSITARIA DE INFRAESTRUCTURA	DPTO.: HVCA - HERE	Arq. Cho M. Felices Arens	Tág, E. Essatuan Y	United the S. y Prop	CE Transmittables	

DOCUMENTOS SUSTENTATORIOS

SOLICITO: AMBIENTE Y EQUIPO PARA SUSTENTACIÓN DE TESIS

SEÑOR DIRECTOR DE LA ESCUELA ACADEMICO PROFESIONAL DE INGENIERÍA CIVIL DE LA UNIVERSIDAD NACIONAL DE HUANCAVELICA.

S.D

Yo: OLARTE BREÑA, Iván Marino, identificado con DNI Nº 44796941 y SÀNCHEZ CHOQUE, Romel Enrique, identificado con DNI Nº 43556883; bachilleres en la Especialidad de Ingeniería Civil, nos presentamos ante usted, y exponemos:

Que habiendo culminado el trabajo de investigación titulado "INTERACCIÓN SÌSMICA SUELO – ESTRUCTURA EN LA EDIFICACIÓN DE LA RESIDENCIA ESTUDIANTIL DE LA UNIVERSIDAD NACIONAL DE HUANCAVELICA" y siendo declarados aptos por unanimidad solicitamos ambiente y equipos necesarios para la sustentación de tesis el día 06 de FEBRERO a horas 3:00 pm.

ADJUNTO:

- Recibo por derecho de Auditorio.
- Recibo por derecho de trámite.

POR LO EXPUESTO:

Solicitamos a Ud. Señor director acceda nuestra petición por ser de justicia a la que esperamos alcanzar.

Huancavelica, 04 de Febrero del 2014

OLARTE BREÑA, Iván Marino

DNI Nº 44796941

SANCHEZ CHOQUE, Romel Enrique

ĎNI № 43556883

(Creada por Ley Nº 25265)

FACULTAD DE CIENCIAS DE INGENIERÍA

Ciudad Universitaria Paturpampa Teléf. 067 452780

RESOLUCIÓN DE DECANO Nº 014-2014-FCI-UNH.

Huancavelica, enero 30 del 2014.

VISTO:

El expediente solicitud de fecha 29-01-2014, sobre lugar fecha y hora para sustentación de tesis presentado por Iván Marino Olarte Breña y Romel Enrique Sanchez Choque, demás actuados y;

CONSIDERANDO:

Que, la Universidad Nacional de Huancavelica fue creada mediante Ley N° 25265 del 20-06-90, con sus facultades de Ciencias de Ingeniería, Educación y Enfermería; a la fecha con creación y funcionamiento de otras EAPs y Facultades, las cuales funcionan en la capital y provincias del Departamento de Huancavelica.

Que, mediante Resolución de Consejo Universitario Nº 0195-2012-COyG-UNH-ANR de fecha octubre 10 del 2012, en parte resolutiva numeral uno (1), precisa nombrar al Dr. Nicasio Valencia Mamani, como Decano de la Facultad de Ciencias de Ingeniería de la Universidad Nacional de Huancavelica, con vigencia del 10 de octubre de 2012 al 09 de octubre de 2015.

Que, de conformidad con el artículo 39º del reglamento de grados y títulos, de la Universidad Nacional de Huancavelica, Si el graduado es declarado Apto para sustentación (por unanimidad o mayoría), solicitará al Decano de la Facultad para que fije lugar, fecha y hora para la sustentación. La Decanatura emitirá la Resolución fijando fecha, hora y lugar para la sustentación, asimismo entregara a los jurados el formato del acta de evaluación.

Que, mediante solicitud de fecha 29-01-2014, presentado por Iván Marino Olarte Breña y Romel Enrique Sanchez Choque, egresados de la EAP. Civil (Huancavelica), solicita fijar lugar, fecha y hora de sustentación de tesis titulado "INTERACCIÓN SISMICA SUELO – ESTRUCTURA EN LA EDIFICACIÓN DE LA RESIDENCIA ESTUDIANTIL DE LA UNIVERSIDAD NACIONAL DE HUANCAVELICA".

Que, mediante Proveído Nº 189 de fecha 29-01-2014, el Decano de la Facultad de Ciencias de 6Ingeniería, autoriza al Secretario Docente emisión de la resolución correspondiente.

Que, en cumplimiento del artículo 119 (inciso b) del Estatuto de la Universidad Nacional de Huancavelica, función del Decano conducir la gestión académica y administrativa de la Facultad, por lo que procede a existica el instrumento legal pertinente.

SERESUELVE:

ÉTÍCULO PRIMERO.- PROGRAMAR, lugar, fecha y hora de sustentación del informe final de Tesis titulado "INTERACCIÓN SISMICA SUELO – ESTRUCTURA EN LA EDIFICACIÓN DE LA RESIDENCIA ESTUDIANTIL DE LA UNIVERSIDAD NACIONAL DE HUANCAVELICA". Presentado por **Iván Marino Olarte Breña y Romel Enrique Sanchez Choque**, egresados de la Escuela Académico Profesional de Civil (Huancavelica), Facultad de Ciencias de Ingeniería de la Universidad Nacional de Huancavelica, de acuerdo al siguiente detalle:

LUGAR : Auditórium de la Facultad de Ciencias de Ingeniería-UNH

FECHA: 06 de Febrero del 2014.

HORA: 3:00 p.m.

(Creada por Lev Nº 25265)

FACULTAD DE CIENCIAS DE INGENIERÍA

Ciudad Universitaria Paturpampa Teléf. 067 452780

RESOLUCIÓN DE DECANO Nº 014-2014-FCI-UNH.

Huancavelica, enero 30 del 2014.

ARTÍCULO SEGUNDO.- RATIFICAR al Ing. Omar CABALLERO SANCHEZ como Asesor, Docente adscrito al Departamento Académico de Civil (Huancavelica), Facultad de Ciencias de Ingeniería de la Universidad Nacional de Huancavelica.

ARTÍCULO TERCERO.- RATIFICAR como Miembros del Jurado Evaluador conformado por:

Ing. MARCO ANTONIO LÓPEZ BARRANTES

: PRESIDENTE Ing. CARLOS GASPAR PACO : SECRETARIO

Ing. HUGO RÚBEN LUJAN JERI

Lic. ELEUTERIO MARTÍN ALCANTARA ESPINOZA : ACCESITARIO

: VOCAL

ARTÍCULO CUARTO - ELÉVESE la presente Resolución; interesados, Asesor, Miembros del Jurado Evaluador y Escuela Académico Profesional de Civil (Huancavelica), para disponer su cumplimiento a través de la Decanatura de la Facultad de Ciencias Ingeniería, Universidad Nacional de Huancavelica.

Registrese, comuniquese y archivese-

Dr. NICASTØ VALENCIA MAMANI Decano

MARCELO GUILLEN DOMINGUEZ M.Sc. HÉCTOR

7Secretario Docente

SOLICITO: LUGAR, FECHA Y HORA PARA

SUSTENTACIÓN DE TESIS

SEÑOR DECANO DE LA FACULTAD DE CIENCIAS DE INGENIERIA DE LA UNIVERSIDAD NACIONAL DE HUANCAVELICA

S.D.

Yo, SANCHEZ CHOQUE, Romel Enrique, con DNI N° 43556883 y código de matricula N° 2005151538, domiciliado en el Jr. Mercurio S/N del cercado de la ciudad de Huancavelica, bachiller en ingeniería Civil y:

Yo, OLARTE BREÑA, Iván Marino, con DNI N° 44796941 y código de matricula N° 2006151029, domiciliado en el Jr. José Gálvez S/N de Santa Ana, bachiller en ingeniería Civil ante usted respetuosamente nos presentamos y exponemos:

Que habiendo culminado con el proceso de revisión del informe final del Trabajo de Investigación Científica (Tesis), por los señores miembros el jurado calificador y siendo **Aprobados por Unanimidad**, solicitamos que se designe la fecha y Hora para la sustentación de Tesis; para lo cual proponemos el día 06 de Febrero a Horas 3:00 pm del presente año 2014.

Para tal fin Adjuntamos los siguientes requisitos:

- 02 recibos por derecho de trámite
- 02 recibos por derecho de sustentación
- Copia de Resolución de Aprobación de Tesis
- Informe de conformidad de revisión de informe final de tesis.
- Acta de declaración de apto para sustentación
- 03 ejemplares del Informe Final

POR LO TANTO:

Agradecemos a Ud. atender a nuestra petición

por ser de justicia.

Huancavelica, 28 de Enero del 2014

SANCHEZ CHOOUE, Romel Enrique

ARTE BREÑA, Iván Marino DNI N° 44796941

(Creada por Ley N° 25265)

FACULTAD DE CIENCIAS DE INGENIERIA E.A.P. INGENIERIA CIVIL (HVCA)

"AÑO DE LA PROMOCIÓN DE LA INDUSTRIA RESPONSABLE Y DEL COMPROMISO CLIMÁTICO"

INFORME N° 001 - 2014 - EAPICH - FCI - UNH

Α

Ing. Marco Antonio López Barrantes

Director de la Escuela Académico Profesional de Ingeniería Civil (Huancavelica)

DE

Miembros del Jurado Evaluador

ASUNTO

CONFORMIDAD DE REVISIÓN DE INFORME FINAL DE TESIS

FECHA

Huancavelica, 28 de Enero del 2014

Los miembros del Jurado Evaluador nos dirigimos a Ud. para saludarlo muy cordialmente y al mismo tiempo informarle que hemos cumplido con la revisión y aprobación del Informe Final de Tesis Titulado: "Interacción sismica suelo - Estructura en la Edificación de la RESIDENCIA ESTUDIANTIL DE LA UNIVERSIDAD NACIONAL DE HUANCAVELICA"; presentado por los bachilleres: Olarte Breña Iván Marino y Romel Enrique Sánchez Choque, por lo que se debe realizar los trámites correspondientes para fijar la fecha y hora de la sustentación de Tesis.

Es cuanto podemos Informarle, para su conocimiento y demás fines pertinentes.

Atentamente.

Ing. LOPEZ BA NTES, Marco Antonio

esidente

Ing. GASPAR-PACO, Carlos

Secretário

JERI, Hugo Rubén

Lic. ALCANTARA ESPINOZA. Eleuterio Martín

Accesitario

ACTA DE DECLARACION DE APTO PARA SUSTENTACION

En la ciudad Universitaria de Paturpampa a los .27... días del mes de ... ENERO...... del año 2014, a horas 10:30 AM se reunieron: los miembros del Jurado Calificador, que está conformado de la siguiente manera:

PRESIDENTE

ING. MARCO ANTONIO LÓPEZ BARRANTES

SECRETARIO VOCAL

ING. CARLOS GASPAR PACO ING, HUGO RUBÉN LUJAN JERI

ACCESITARIO

LIC. ELEUTERIO MARTIN ALCÁNTARA ESPINOZA

Designados con la Resolución de Consejo de Facultad Nº 347-2013-FCI-UNH, como miembros de jurado calificador para optar el Título Profesional por la modalidad de: Trabajo de Investigación Científica (TESIS), titulado:

"INTERACCIÓN SÍSMICA SUELO-ESTRUCTURA EN LA EDIFICACIÓN DE LA RESIDENCIA ESTUDIANTIL DE LA UNIVERSIDAD NACIONAL DE HUANCAVELICA"

Siendo autores los Bachilleres:

- OLARTE BREÑA, Iván Marino
- SANCHEZ CHOQUE, Romel Enrique

Asesorado por

ING. OMAR CABALLERO SANCHEZ

A fin de revisar el informe final previo a la sustentación.

Llegando a la conclusión:

DECLARAR APTO PARA LA SUSTENTACION DEL INFORME ANTES CITADO

|X|

REALIZAR LAS CORRECIONE SEÑALADAS

En conformidad a lo actuado firmamos al pie.

ing. LÓPEZ BARB ÑTES, Marco Antonio

Ing. LUJAN JERI, Hugo Rubén VOCAL

ing GASPAR PACO, Carlos SECRETARIO

Lic. ALCÁNTARA ESPINOZA, Eleuterio Martín

ACCESITARIO

CONSTANCIA

Mediante el presente documento hago constar que el suscrito ha cumplido con revisar la REDACCIÓN de la tesis: "INTERACCIÓN SÍSMICA SUELO-ESTRUCTURA DE LA RESIDENCIA ESTUDIANTIL DE LA UNIVERSIDAD NACIONAL DE HUANCAVELICA", realizada por los alumnos Iván Marino Olarte Breña y Romel Enrique Sánchez Choque, de la Escuela Académica de Ingeniería Civil de la UNH.

Huancavelica, 24 de enero del 2014

Mg. ALVÁRO I. CAMPOSANO CÓRDOVA

UNIVERSIDAD NACIONAL DE HUANCAVELICA **FACULTAD DE CIENCIAS DE INGENIERIA ESCUELA ACADEMICO PROFESIONAL DE**

SIDAD NACIONAL DE HUANCAVELICA

SOLICITO: REVISION

APTO PARA APROBACION

INFORME DE TESIS

SEÑOR DIRECTOR DE LA ESCUELA PROFESIONAL DE INGENIERIA CIVIL DE LA UNIVERSIDAD NACIONAL DE HUANCAVELICA

S.D.

Yo, SANCHEZ CHOQUE, Romel Enrique, con DNI N° 43556883, domiciliado en el Jr. Mercurio S/N del cercado de la ciudad de Huancavelica. bachiller en ingeniería Civil v:

Yo, OLARTE BREÑA, Ivan Marino, con DNI N° 44796941, domiciliado en el Jr. José Gálvez S/N de Santa Ana, bachiller en ingeniería Civil ante usted respetuosamente nos presentamos y exponemos:

Que, habiendo concluido con el proceso ejecución y evaluación de la tesis "INTERACCION SÍSMICA SUELO-ESTRUCTURA DE LA EDIFICACIÓN DE LA RESIDENCIA ESTUDIANTIL DE LA UNIVERSIDAD NACIONAL DE HUANCAVELICA", solicitamos la revisión y declaración de apto para la sustentación del presente informe, por parte de los jurados designados mediante Resolución de Consejo de Facultad Nº 347-2013-FCI-UNH, a fin de cumplir con el reglamento de Grados y títulos de la Universidad Nacional de Huancavelica, para lo cual adjunto:

Tres ejemplares anillados de informe de tesis

POR TANTO.

A Ud. Señor Director, pido acceder a nuestra petición por ser de justicia.

Huancavelica, Diciembre del 2013

SANCHEZ CHOQUE DNI Nº 43556883

ARTE BREINARIMATNACIONAL DE HUANCAVELICA DNI Nº 44796941 AG DE CIENCIA DE INGENIERIA EAP DE INGENIERIA CIVIL

PROVEIDO

Visto:

Pase a la cricina

C.C.

UNIVERSIDAD NACIONAL DE HUANCAVELICA **FACULTAD DE CIENCIAS DE INGENIERIA E.A.P. INGENIERIA CIVIL (HVCA)**

"Año de la Inversión para el Desarrollo Rural de la Seguridad Alimentaria"

INFORME N° 087 -2013-OCS/AT-EAPIC-UNH

Α

: Ing. MARCO ANTONIO LOPEZ BARRANTES

Director de la EAP Ingeniería Civil

De

: Ing. OMAR CABALLERO SANCHEZ

Docente ordinario UNH

Asunto

: APROBACION DE INFORME DE TESIS

Fecha

: 17 de diciembre del 2013

Me es grato de dirigirme a Ud. en calidad de asesor de la tesis: "INTERACCION SISMICA SUELO - ESTRUCTURA DE LA RESIDENCIA ESTUDIANTIL DE LA UNIVERSIDAD NACIONAL DE HUANCAVELICA", presentado por los tesistas: OLARTE BREÑA, Ivan M. y SANCHEZ CHOQUE, Romel E., para optar el título profesional de Ingeniero Civil, según Resolución de Consejo de Facultad N° 347-2013-FCI-UNH; que habiendo finalizado el proceso de ejecución y evaluación del informe, desde mi punto de vista reúne los requisitos establecidos para el caso, por lo cual se expide el informe final de la tesis para los fines pertinentes.

Agradeciendo su atención al presente, reciba usted mi saludo.

Atentamente,

Omar CABALL .ÉRO SANCHEZ

DOCENTE

C.C.

(Creada por Ley Nº 25265)

FACULTAD DE CIENCIAS DE INGENIERÍA

Ciudad Universitaria Paturpampa Teléf. 067 452780

RESOLUCIÓN DE CONSEJO DE FACULTAD Nº 347-2013-FCI-UNH.

Huancavelica, setiembre 13 del 2013.

VISTOS:

La hoja de tramite con proveído Nº 1829, Oficio Nº 461-2013-EAPCH-FCI-VRAC-UNH, sobre aprobación de Proyecto de Investigación (Tesis), Asesor y Jurados - EAP Civil (Huancavelica)-FCI, demás actuados y;

SIDERANDO:

Que, la Universidad Nacional de Huancavelica fue creada mediante Ley N° 25265 del 20-06-90, con sus utades de Ciencias de Ingeniería, Educación y Enfermería; a la fecha con creación y funcionamiento de EAPs y Facultades, las cuales funcionan en la capital y provincias del Departamento de Huancavelica.

Que, mediante Resolución de Consejo Universitario Nº 0195-2012-COyG-UNH-ANR de fecha octubre 10 del 2012, en parte resolutiva numeral uno (1), precisa nombrar al Dr. Nicasio Valencia Mamani, como Decano de la Facultad de Ciencias de Ingeniería de la Universidad Nacional de Huancavelica, con vigencia del 10 de octubre de 2012 al 09 de octubre de 2015.

Que, de acuerdo al Artículo 25° y Articulo 30 del Reglamento de Grados y Títulos, el Trabajo de Investigación se inicia con la presentación del proyecto de investigación por triplicado a la Escuela Académico Profesional correspondiente, solicitando su aprobación, designación del docente asesor y jurados. El Director de la Escuela designará al docente teniendo en cuenta el tema de investigación, en un plazo no menos de cinco dia hábiles.

Que mediante Oficio Nº 461-2013-EAPCH-FCI-VRAC-UNH de fecha 27-08-2013, el Ing. Marco Antonio Lopez Barrantes, Director de la Escuela Académico Profesional de Civil (Huancavelica)-FCI, solicita aprobación de Proyecto de Investigación (Tesis), designación de Asesor y Jurados Evaluadores, del Proyecto de Investigación (Tesis) titulado "INTERACCIÓN SISMICA SUELO - ESTRUCTURA EN LA EDIFICACIÓN DE LA RESIDENCIA ESTUDIANTIL DE LA UNIVERSIDAD NACIONAL DE HUANCAVELICA", presentado por los egresados Iván Marino Olarte Breña y Romel Enrique Sanchez Choque, de la Escuela Académico Profesional de Civil (Huancavelica), Facultad de Ciencias de Ingeniería.

Que, en Sesión Ordinaria del 10-09-2013, el Consejo de Facultad acuerda; aprobar el Proyecto de Investigación, Designación de Asesor y Jurados Evaluadores del Proyecto de Investigación titulado "INTERACCIÓN SISMICA SUELO - ESTRUCTURA EN LA EDIFICACIÓN DE LA RESIDENCIA ESTUDIANTIL LA UNIVERSIDAD NACIONAL DE HUANCAVELICA", presentado por los egresados Iván Marino Olarte y Romel Enrique Sanchez Choque, de la Escuela Académico Profesional de Cvil (Huancavelica) - FCI.

de acuerdo al Artículo 119 (inciso j) del Estatuto de la UNH, el Decano de la Facultad tiene la atribución de milir y hacer cumplir los acuerdos del Consejo de Facultad, por tanto tiene la potestad de emitir el instrumento legal pertinente.

SE RESUELVE:

ARTÍCULO PRIMERO.- APROBAR el Proyecto de Investigación (Tesis) titulado "INTERACCIÓN SISMICA SUELO - ESTRUCTURA EN LA EDIFICACIÓN DE LA RESIDENCIA ESTUDIANTIL DE LA UNIVERSIDAD NACIONAL DE HUANCAVELICA", presentado por los egresados Iván Marino Olarte Breña y Romel Enrique Sanchez Choque, de la Escuela Académico Profesional de Civil (Huancavelica), Facultad de Ciencias de Ingeniería de la Universidad Nacional de Huancavelica.

(Creada por Lev Nº 25265)

FACULTAD DE CIENCIAS DE INGENIERÍA

Ciudad Universitaria Paturpampa Teléf. 067 452780

RESOLUCIÓN DE CONSEJO DE FACULTAD Nº 347-2013-FCI-UNH.

Huancavelica, setiembre 13 del 2013.

JNIVERSIDAD NACIONAL DE HUANCAVELICA E.A.P. DE INGENIERIA PAVI

ARTÍCULO SEGUNDO - DESIGNAR al Ing. Omar Caballero Sánchez como Asesor del Proyecto de Investigación (Tesis) titulado "INTERACCIÓN SISMICA SUELO - ESTRUCTURA EN LA EDIFICACIÓN DE LA RESIDENCIA ESTUDIANTIL DE LA UNIVERSIDAD NACIONAL DE HUANCAVELICA" de la Escuela Académico Profesional de Civil (Huancavelica).

ARTÍCULO TERCERO.- DESIGNAR como Miembros de Jurado Evaluador del Proyecto de Investigación (Tesis) titulado "INTERACCIÓN SISMICA SUELO - ESTRUCTURA EN LA EDIFICACIÓN DE LA RESIDENCIA ESTUDIANTIL DE LA UNIVERSIDAD NACIONAL DE HUANCAVELICA", de la Escuela Académico Profesional de Civil (Huancavelica), Facultad de Ciencias de Ingeniería de la Universidad Nacional de Huancavelica, a los siguientes Docentes:

Ing. MARCO ANTONIO LÓPEZ BARRANTES : PRESIDENTE

Ing. CARLOS GASPAR PACO : SECRETARIO

Ing. HUGO RÚBEN LUJAN JERI

: VOCAL

Lic. ELEUTERIO MARTÍN ALCÁNTARA ESPINOZA : ACCESITARIO

ARTÍCULO CUARTO.- ELÉVESE la presente Resolución; interesados, Asesores, Miembros del Jurado Evaluador y Escuela Académico Profesional de Civil (Huancavelica), para disponer su cumplimiento a través de la Decanatura de la Facultad de Ciencias Ingeniería.

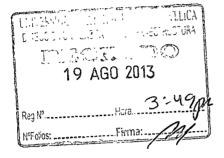
Registrese, comuniquese y archivese-

VICASIO WATENCIA MAMANI

Decano

M.Sc. HÉCTOR MARCELO GUILLEN DOMINGUEZ

Secretario Docente


SOLICITO: COPIA DEL EXPEDIENTE

TECNICO DE LA RESIDENCIA

UNIVERSITARIA

SEÑORA DIRECTORA DE LA INFRAESTRUCTURA DE LA UNIVERSIDAD NACIONAL DE HUANCAVELICA

S.D.

Yo, SANCHEZ CHOQUE, Romel Enrique, bachiller en Ing. Civil de la Universidad Nacional de Huancavelica, domiciliado en el Jr. Mercurio S/N del cercado de la ciudad de Huancavelica, identificado con Nº DNI 43556883, y:

Que, habiéndome aprobado el proyecto de tesis:

"INTERACCION SISMICA SUELO-ESTRUCTURA DE LA EDIFICACION DE LA RESIDENCIA ESTUDIANTIL DE LA UNIVERSIDAD NACIONAL DE HUANCAVELICA", y para poder cumplir con los objetivos de dicho proyecto, recurro a su despacho, para solicitarle el acceso y copia del expediente técnico del proyecto de la edificación de la Residencia Universitaria, esperando su atención en tal pedido ya que es un proyecto de trascendencia para la provincia de Huancavelica, para tal fin adjunto:

- Copia de Memorándum de asignación de jurados.
- Copia de acta de aprobación del jurado evaluador de proyecto de tesis.

POR TANTO.

A Ud. Señora Directora, pido acceder a nuestra petición.

Huancavelica, 19 de Agosto del 2013

SANCHEZ CHOQUE, Romel E.

Bach. Ingeniero Civil DNI Nº 43556883

FACULTAD DE CIENCIAS DE INGENIERIA ESCUELA ACADÉMICO PROFESIONAL DE CIVIL-HUANCAVELICA

UNIVERSIDAD NACIONAL DE HEJACAVELICA

FACULTAD DE CIENCIAS DE IMPENIÊRÍA

Ciudad Universitaria Paturpampa - Telf. 452639

"Año de la Inversión para el Desarrollo Rural y la Seguridad Alimentaria"

Huancavelica, 27 de Agosto de 2013

OFICIO № 461-2013-EAPCH-FCI-VRAC-UNH

SEÑOR:

Dr. NICASIO VALENCIA MAMANI.

Decano de la Facultad de Ciencias de Ingeniería.

PRESENTE.-

ASUNTO

: SOLICITO LA EMISION DE RESOLUCION DE APROBACION Y DESIGNACION DE ASESOR Y

JURADOS.

REF.

: Informe N° 003-2013/UNH/FCI/EAPCH/AI-IAAB

Es grato dirigirme a usted, para saludarlo cordialmente a nombre de la Escuela Académico Profesional de ingeniería Civil y el mío propio, y a la vez remitir, la tiene por finalidad de remitirle el informe del Área de Investigación en donde se solicitan la emisión de Resolución y aprobación y designación de asesor y jurados del Proyecto de Tesis titulado "INTERACCION SISMICA SUELO ESTRUCTURA EN LA EDIFICACION DE LA RESIDENCIA ESTUDIANTIL DE LA UNIVERSIDAD NACIONAL DE HUANCAVELICA", de los Bachilleres: IVAN MARINO OLARTE BREÑA y ROMEL ENRIQUE SANCHEZ CHOQUE, se remite para su aprobación y emisión de la Resolución.

ASESOR ASIGNADO:

ASESOR

: Ing. OMAR CABALLERO SANCHEZ

JURADOS ASIGNADORA

PRESIDENTE : Ing. MARCO ANTONIO LOPEZ BARRANTES

SECRETARIO : Ing. CARLOS GASPAR PACO
VOCAL : Ing. HUGO RUBEN LUJAN JERI

ACCESITARIO : Lic. ELEUTERIO MARTIN ALCANTARA ESPINOZA

Seguro de contar con la atención al presente, aprovecho la ocasión para reiterarle las muestras de mi consideración y estima personal.

Atentamente,

C. C.
Archivo
MALB/nancy

(Creada por Ley N° 25265)

"Año de la Inversión para el Desarrollo Rural y la Seguridad Alimentaria"

INFORME N° 002 – 2013 – EAPCH – FCI – UNH

Α

Ing. MARCO ANTONIO LÓPEZ BARRANTES

Director de la Escuela Académico profesional de Ingeniería Civil - Huancavelica

DE

.

MIEMBROS DE JURADO DE PROYECTO DE TESIS

ASUNTO

:

APROBACIÓN DE PROYECTO DE TESIS

FECHA

:

25 de Julio del 2013

Los miembros del Jurado Evaluador, nos dirigimos a usted, para saludarlo muy cordialmente y al mismo tiempo informarle que hemos cumplido con la revisión y aprobación del proyecto de Tesis titulado: "INTERACCIÓN SÍSMICA SUELO — ESTRUCTURA EN LA RESIDENCIA ESTUDIANTIL DE LA UNIVERSIDAD NACIONAL DE HUANCAVELICA", presentado por los bachilleres: IVÁN MARINO OLARTE BREÑA y ROMEL ENRIQUE SÁNCHEZ CHOQUE, por lo que se debe realizar los trámites correspondientes para aprobar el proyecto en mención vía resolución.

Es todo cuanto podemos informarle, para su conocimiento y demás fines pertinentes

ATENTAMENTE.

Ing. Marco Anton

LÓPEZ BARRANTES

Presidente

Ing Carles GASPAR PACO

Secreta/rio

Ing. Hugo Rubén LUJAN JERI

Vocal

c.c. Archivo

UNIVERSIDAD NACIONAL DE HUANCAVELICA FACULTAD DE CIENCIAS DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE CIVIL (HUANCAVELICA)

ACTA N° 02 -2013-JEPT-EAPICH-FCI-UNH

JURADO EVALUADOR DE PROYECTO DE TESIS

Conste por el presente documento, los miembros designados para la evaluación del Proyecto de tesis.

Presidente:

Ing. Marco Antonio LÓPEZ BARRANTES

Secretario

ing, Carlos GASPAR PACO

Vocal

Ing. Hugo Rubén LUJAN JERI

Reunidos en la sala de Docentes de la E.A.P. Ingeniería Civil – Huancavelica, de la Facultad de Ciencias de ingeniería, el día 25 de Julio del 2013, siendo las 10:00 a.m., determinaron evaluar al bachiller. IVAN MARINO OLARTE BREÑA y el bachiller. ROMEL ENRIQUE SANCHEZ CHOQUE, basado en él:

Proyecto de Investigación, titulado como: "INTERACCION SISMICA SUELO-ESTRUCTURA EN LA EDIFICACION DE LA RESIDENCIA ESTUDIANTIL DE LA UNIVERSIDAD NACIONAL DE HUANCAVELICA".

Culminado la evaluación y cumpliendo con los criterios, el veredicto final de la evaluación del Proyecto de tesis es **APROBADO** por los miembros de la evaluación.

Los miembros de evaluación del Proyecto de tesis, firmamos al pie para dar fe.

Ing. Marco Antonio TOPEZ BARRA

Presidente

Ing. Carlos GASPAR PACO

Secrétario

Ing. (Hugo Rubén LUJAN JERI

Voca

SOLICITO: APROBACION, DESIGNACION DE ASESOR Y JURADOS DEL PROYECTO DE TESIS.

SEÑOR DIRECTOR DE LA ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA CIVIL (HVCA) DE LA UNIVERSIDAD NACIONAL DE HUANCAVELICA

S.D.

TESISTAS:

SANCHEZ CHOQUE, Romet Enrique, domiciliado en el Jr. MercurioS/N del cercado de la ciudad de Huancavelica, identificado con Nº DNI 43556883, bachiller en Ingeniería Civily:

OLARTE BREÑA, Iván Marino, domiciliado en el Jr. José Gálvez s/n barrio de Santa Ana,identificado con Nº DNI 44796941, bachiller en Ingeniería Civil, ante usted respetuosamente nos presentamos y exponemos:

Que, habiendo culminado nuestros estudios de Pre grado y siendo bachilleres en Ingeniería Civil en la Universidad Nacional de Huancavelica y de esta manera poder optar el Título Profesional de Ingeniero Civil por la Modalidad de Presentación y Sustentación de un Trabajo de Investigación Científica, recurrimos a su despacho, a fin de solicitar la aprobación, designación de asesor y jurados del proyecto de tesis "EVALUACIÓN DE LA "INTERACCION SÍSMICA SUELO-ESTRUCTURA DE LA EDIFICACIÓN DE LA RESIDENCIA ESTUDIANTIL DE LA UNIVERSIDAD NACIONAL DE HUANCAVELICA", asimismo proponemos al Ing. CABALLERO SANCHEZ, Omar como asesor del proyecto de tesis por ser docente nombrado de la E.A.P. Ing. Civil (HVCA) y ser docente en estructuras, para tal fin adjuntamos:

- a. Proyecto de Tesis por triplicado.
- b. Boucher por presentación del proyecto de tesis

POR TANTO.

A Ud. Señor Director, pido acceder a nuestra petición por ser de justicia.

Huancavelica, 11 deAbrildel 2013

SANCHEZ CHOQUE, Romel E.

DNI Nº 43556883

OLARTE BREÑA, Iván M.

DNI Nº 44796941