Families of Graceful Spiders with (2k+1)k, (2k+1)k+1 and (2k+1)+k+1 Legs

dc.contributor.authorBerrocal Huamani, Nelson
dc.contributor.authorAtoche Bravo, María Jacqueline
dc.contributor.authorPoma, F.
dc.date.accessioned2025-06-09T15:14:45Z
dc.date.available2025-06-09T15:14:45Z
dc.date.issued2025-01-21
dc.description.abstractWe say that a tree is a spider if has at most one vertex of degree greater than two. We obtain existence of families of gracefuls spiders with ℓ(2k +1)−k, ℓ(2k +1)−k +1 and ℓ(2k +1)+k +1 legs. We provide specific labels for each spider graph, these labels are constructed from graceful path graphs that have a particular label, so there is acorrespondence between some paths and graceful spiders that we are studying, this correspondence is described in an algorithm outlined in the preliminaries.
dc.fecha.inicio2024-08-15
dc.formatapplication/pdf
dc.identifier.doihttps://doi.org/10.37256/cm.6120255497
dc.identifier.urihttps://hdl.handle.net/20.500.14597/9165
dc.language.isoeng
dc.publisherUniversal Wiser Publisher PTE. LTD.
dc.publisher.countrySingapur
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectGraceful labeling
dc.subjectGraph labeling
dc.subjectTree
dc.subjectSpider
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.01.00
dc.titleFamilies of Graceful Spiders with (2k+1)k, (2k+1)k+1 and (2k+1)+k+1 Legs
dc.typeinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/publishedVersion
renati.author.dni47626281
renati.author.orcidhttps://orcid.org/0000-0001-8554-3503
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
CM-5497-final.pdf
Tamaño:
913.73 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
44 B
Formato:
Item-specific license agreed upon to submission
Descripción: